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NETWORK THEORY 

Prerequisite: Mathematics – II & Basic Electronics Engineering 

OBJECTIVES: 

 To learn techniques of solving circuits involving different active and passive elements.  
 To analyze the behavior of the circuit’s response in time domain.  
 To analyze the behavior of the circuit’s response in frequency domain.  
 To understand the significance of network function  

 UNIT-1  (CIRCUIT ANALYSIS) 

KVL- KCL- circuit elements(R,L &C) in series and parallel- voltage and current divider rule-source 
transformation technique-duals and duality- mesh analysis-super mesh analysis-nodal analysis-super 
nodal analysis-network topology-definitions-incident matrix-fundamental cut set matrix-series and 
parallel resonance. 

UNIT-2(NETWORK THEOREMS) 

Superposition theorem, Thevenin’s theorem, Norton’s theorem, Maximum power Transfer theorem, 
reciprocity theorem, compensation theorem, and Tallegen's theorem as applied to DC and AC. Circuits 

UNIT-3(TWO PORT NETWORKS AND FILTERS DESIGN) 

Z parameter, Y parameter, h parameter, ABCD parameter, g parameter,Inter relationship of different 
parameters-inter connection of two port networks-classification of filters-constant k low pass and high 
pass filters-m-derived low pass and high pass filters-band pass filter-band elimination filter . 

UNIT-4(TRANSIENT AND S-DOMAIN ANALYSIS) 

Steady state and transient response-DC response of an R-L,R-C and R-L-C circuit-sinusoidal response 
of R-L,R-C and R-L-C circuit-concept of complex of frequency-poles and zeros of network function-
significance of poles and zeros-properties of driving point and transfer function. 

UNIT-5(NETWORK SYNTHESIS) 

Hurwitz polynomial-positive real function, frequency response of reactive one port-synthesis of 
reactive one port by Foster’s Method &Cauer method- synthesis of R-L Network by Foster’s Method 
&Cauer method- synthesis of R-C Network by Foster’s Method &Cauer method. 

OUTCOMES: 
• Understand the behavior of different circuits and their response using various circuit analysis tools and 

theorems  
• Understand the analysis in time domain and frequency domain.  
• Understand basic concepts regarding the system definition mathematically and associated network function.  
• Understand the concept of Network synthesis. 
 

Text Books: 
1. Sudhakar, A., Shyammohan, S. P.; “Circuits and Network”; Tata McGraw-Hill New Delhi, 1994 
2. A William Hayt, “Engineering Circuit Analysis” 8th Edition, McGraw-Hill Education.  
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Unit I -NETWORK ANALYSIS 
  AIM: 

                   To create circuits involving different active and passive elements 
 

  Pre-Requisites: 
 
        Knowledge of Basic Mathematics – II & Basic Electronics Engineering 
  Pre - MCQs: 

1. Time constant of a capacitive circuit 
a. Increases with the decrease of capacitance and decrease of resistance 
b. Increases with the decrease of capacitance and increase of resistance 
c. Increases with the increase of capacitance and decrease of resistance 
d. Increase with increase of capacitance and increase of resistance 

        2.     Which of the following is a correct statement of Ohm's law? 

a. I = R/V 
b. R = VI 
c. V = I/R 
d. I = V/R 

        3. A sinusoidal signal has a period of 40 ms. What is its frequency? 

a. 25 Hz 
b. 50 kHz 
c. 50 Hz 
d. 25 kHz 

       4. In a loss-free R-L-C circuit the transient current is 

a. Oscillating 
b. Square wave 
c. Sinusoidal 
d. Non-oscillating 

      5. In a circuit containing R, L and C, power loss can take place in 

a. C only 
b. L  only 
c. R only 

d. All the above 
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 NETWORK ANALYSIS USING KVL & KCL 

  INTRODUCTION: 
Today we live in a predominantly electrical world. Electrical technology is a driving 

force in the changes that are occurring in every engineering discipline. Circuit analysis is 
the foundation for electrical technology.Network is a system with interconnected electrical 
elements. Network and circuit are the same. The only difference being a circuit shall 
contain at least one closed path. 

 

 
 

Network analysis is the process of finding the voltages across, and the currents through 
every component in the network. 

 

     Basic Circuit Elements 
 

Circuit: A circuit is a closed conducting path through which an electric current flows. 
 

Electric Network: A combination of various electric elements, connected in any manner is 
called an electric network. 

 
Electric Circuits consist of two basic types of elements. These are the active elements and the 
passive elements. 
An active element is capable of generating or supplying an electrical energy. 
Examples are voltage source (such as a battery or generator) and current source, oscillators 
etc.. A passive element is one which does not generate electricity but either consumes it or 
stores it. Resistors, Inductors and Capacitors are simple passive elements. Diodes, transistors 
etc. are also passive elements. 

These parameters may be lumped or distributed. 

Elements of a circuit, which are separated physically, are known as lumped elements. 
Ex:- L & C. 

 
Elements, which are not separable for analytical purposes, are known as distributed elements. 

Ex:- Transmission lines having R, L, C all along their length. 
 

Circuits may either be linear or non-linear 

A linear circuit is one whose parameter are constant i.e., they do not change with voltage or 
current. Linear elements obey a straight line law. 

 
For example, a linear resistor has a linear voltage v/s current relationship which passes through 

the origin (V = R.I). A linear inductor has a linear flux vs current relationship which passes 

through the origin (φ = LI) and a linear capacitor has a linear charge vs voltage relationship 
which passes through the origin (q = CV). [R, L and C are constants]. 

 
A Non linear circuit is one whose parameters change with voltage or current. 
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Resistors, inductors and capacitors may be linear or non-linear, while diodes and transistors are 
always nonlinear. 

 
Circuits may either be Unilateral or Bilateral 

The circuit whose properties or characteristics change with the direction of its operation is said to 
be Unilateral. A diode rectifier is a unilateral, because it cannot perform rectification in both 
directions. 

 
A bilateral circuit is one whose properties or characteristics are the same in either direction. 
Examples are R, L & C. The usual transmission line is bilateral, because it can be made to 
perform its function equally well in either direction. 

 
Branch 
A branch represents a single element, such as a resistor or a battery. A branch is a part of the 
network which lies between two junctions 

 
Node 
A node is the point or junction in a circuit connecting two or more branches or circuit elements. 
The node is usually indicated by a dot (.) in a circuit 

Loop 
A loop is any closed path in a circuit, formed by starting at a node, passing through a number of 
branches and ending up once more at the original node. No element or node is encountered more 
than once. 

 
Mesh 

It is a loop that contains no other loop within it. 
 

Fig.1.1 
 

For example, the circuit of Fig 1.1 has 4 nodes, 6 branches and 6 loops and 3 meshes. 
 
 

Resistance R [Unit: Ohm (Ω)] 

 

The relationship between voltage and current is given by v = R i, or i = G v, 
G = conductance = 1/R 
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Power loss in a resistor = R i2. Energy dissipated in a resistor w = ∫ R.i2 dt 

There is no storage of energy in a resistor. 
 

Inductance L [Unit: Henry (H)] 

The relationship between voltage and current is given by v = N =L 

Energy stored in an inductor = ½ L i2 

No energy is dissipated in a pure inductor. However as practical inductors have some wire 
resistance there would be some power loss. There would also be a small power loss in the 
magnetic core (if any). 

Capacitance C [Unit: Farad (F)] 

 

The relationship between voltage and current is given by i = =C 

Energy stored in an capacitor = ½ C v2 

No energy is dissipated in a pure capacitor. However practical capacitors also have some power 
loss. 

 

 Independent and Dependent sources 
 

Those voltage or current sources, which do not depend on any other quantity in the circuit, are 
called independent sources. An independent d.c. voltage source is shown in Fig.1.2 (a) whereas a 
time varying voltage source is shown in Fig.1.2 (b). The positive sign shows that terminal A is 
positive with respect to terminal B. In other words, potential of terminal A is v volts higher than 
the terminal B. 
Similarly, Fig.1.2 (c) shows an ideal constant current source whereas Fig.1.2 (d) depicts a time- 
varying current source. The arrow shows the direction of flow of the current at any moment 
under consideration. 

 

Fig.1.2: Independent voltage and current sources 
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A dependent voltage or current source is one which depends on some other quantity which may 
be either a voltage or a current. Such a source is represented by a diamond shape as shown in 
Fig.1.3. There are four possible dependent sources. 

1. Voltage-dependent voltage source [Fig.1.3 (a)] 
2. Current- dependent voltage source [Fig.1.3 (b)] 
3. Voltage- dependent current source [Fig.1.3 (c)] 
4. Current - dependent current source [Fig.1.3 (d)] 

 
Such sources can also be either constant sources or time-varying sources. The constant of 
proportionality are written as α,r,g and β. The constants α and β have no units, r has the 
unit of ohms and g has the unit of seimens. 

 

 
 

Fig.1.3: Dependent voltage and current sources 
 
 

 Fundamental Laws 
The fundamental laws that govern electric circuits are Ohm’s law and Kirchoff’s laws. 

 

 Ohm’s Law 
 

Ohm’s law states that the voltage v across a resistor is directly proportional to the current i 
flowing through it. 
v ∝ i, v = R . i where R is the proportionality constant. 

 
A short circuit in a circuit element is when the resistance (and any other impedance) of the 
element approaches zero. [The term impedance is similar to resistance but is used in alternating 
current theory for other components] 
An open circuit in a circuit element is when the resistance (and any other impedance) of the 
element approaches infinity. 

 
In addition to Ohm’s law we need the Kirchoff’s voltage law and the Kirchoff’s current law to 
analyse circuits. 
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 Kirchoff’s Current Law 
 

Kirchoff’s Current Law states that the algebraic sum of the currents entering a node is zero. It 
simply means that the total current leaving a junction is equal to the current entering that 
junction. 

 Σ i = 0 

Consider the case of a few conductors meeting at a point A as in Fig.1.4. Some conductors have 
currents leading to point A, whereas some have currents leading away from point A. 

 

Fig.1.4 
 

Assuming the incoming currents to be positive and the outgoing currents negative, we have 
i1 + i2 − i3 + i4 − i5 = 0 

 
 

 
 Kirchoff’s Voltage Law 

 

Kirchoff’s Voltage Law states that the algebraic sum of all voltages around a closed path (or 
loop) is zero. Σ v = 0 

 
In other words,    ... round a mesh 

 
Consider a circuit as shown in Fig.1.5, we have 

− v1 + v2 + v3 + v4 = 0 
depending on the convention, you may also write 

v1 − v2 − v3 − v4 = 0 

 

Note: v1, v2 … may be voltages across either 
active elements or passive elements or both 
and may be obtained using Ohm’s law. Fig.1.5 
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Fig.1.6: Kirchoff’s analysis circuit 

 
 

 Determination of Voltage sign 
 

In applying Kirchhoff’s laws to specific problems, for example, the circuit shown in Fig.1.6, 
particular attention should be paid to the algebraic signs of voltage drops and e.m.fs. Following 
sign conventions is suggested. 

 
(a) Sign of Battery E.M.F. 

A rise in voltage should be given a +ve sign and a fall in voltage a –ve sign. Keeping this in 
mind, it is clear that as we go from the –ve terminal of a battery to its +ve terminal as shown in 
Fig.1.7(a) there is a rise in potential, hence this voltage should be given a +ve sign. On the other 
hand, if we go from the +ve terminal of a battery to its -ve terminal) there is a fall in potential, 
hence this voltage should be preceeded by a -ve sign. It is important to note that the sign of the 
battery e.m.f is independent of the direction of the current through that branch. 

 

(a) (b) 
Fig.1.7: Voltage Sign 
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(b) Sign of IR Drop 

 

Now, take the case of a resistor for Fig.1.7 (b). If we go through a resistor in the same direction 
as of the current, then there is a fall in potential because current flows from a higher to lower 
potential. Hence this voltage fall should be taken –ve. However, if we go in a direction opposite 
of the current, then there is a rise in voltage. Hence this voltage rise should be given a +ve. 

 
Consider the closed path ABCDA in Fig.1.8, as we travel around the mesh in clockwise 
direction, using KVL we get, 

 
 
 

 
Or 

 
 
 
 
 

Fig.1.8 
 
 

 Assumed Direction of Current 
 

The direction of current flow may be assumed either clockwise or anticlockwise. If the assumed 
direction of the current is not actual direction, then on solving the question, this current will be 
found to have a minus sign. If the answer is positive, then assumed direction is same as actual 
direction. 

 
 

 Voltage Divider 
 

Fig.1.9: Voltage Divider 
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The voltage divider circuit is shown in Fig.1.9. 
 

Ohm’s law gives  …… (1) 

and we know that -……. (2) 

Substituting eqn (2) into eqn (1) gives eqn (3) 

  (3) 

In general, if there are n resistors in series, the voltage across resistor Rx is given by 

 
 Current Divider 

 

The two-resistor circuits shown in the circuit Fig.1.10 is a current divider circuit. The current 
through R1 is given by, 

 

 

 
Fig.1.10: Current Divider 

 
 

 Series Circuits 
 

 

When elements are connected in series, from Kirchoff’s current law, i1 = i2 = i and from 
Kirchoff’s Voltage Law, v1 + v2 = v. Also from Ohm’s Law, 
v1 = R1 i1 , v2 = R2 i2 , v = R I ∴ R1 i + R2 i = R i, or R = R1 + R2 

 
 

That is, in a series circuit, the total resistance is the sum of the individual resistances, and the 
voltage across the individual elements is directly proportional to the resistance of that element. 
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 Parallel Circuits 
 
 

When elements are connected in parallel, from Kirchoff’s current law, i1 + i2 = i and from 
Kirchoff’s Voltage Law, v1 = v2 = v. Also from Ohm’s Law, v1 = R1 i1 , v2 = R2 i2 , v = R i 

 

∴ +  =   or   = +  or  

Also,    = =      =      and    =         ,   = .................. current division rule 

In parallel circuits, the ratio of the current in one branch of a two-branch parallel circuit to the 
total current is equal to the ratio of the resistance of the other branch to the sum of the two 
resistances. 

 
 

Problems on KVL and KCL 
 

1. What is the voltage VS across the open switch in the circuit shown in Fig. Q1? 

Fig. Q1 
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Solution: 
 

We will apply KVL to find VS. Starting from point A in the clockwise direction 

        ∴ 

 

 

2. Find the unknown voltage V1 in the circuit of Fig. Q2. 
 

Fig. Q2 
 
 

Solution: 
 

Taking the outer closed loop ABCDEFA and applying KVL to it, we get 

∴ 

 

 

3. For the circuit shown in Fig. Q3, find VCE and VAG. 

Fig. Q3 
 

Solution: 
Consider the two battery circuits of Fig Q3 separately. Current in the 20V battery circuit ABCD 

is . 

Similarly, current in the 40V battery circuit EFGH is 
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For finding VCE , we will find the algebraic sum of the voltage drops from point E to C via H and 
B. 

 

∴ 

The –ve sign shows that the point C is negative with respect to point E. 
 

For finding VAG , we will find the algebraic sum of the voltage drops from point E to C via H 
and B. 

 

 
 

4. Using Kirchhoff’s Current Law and Ohm’s law, find the magnitude and polarity of voltage V 
in Fig. Q4 

 
 

Fig. Q4 
 

Solution: 
Applying KCL to node A, we have I1-I2+I3=22 ---(i) 
Applying Ohm’s law, we have 
I1 = V/2, I3= V/4, I2= -V/6 

 
Substituting these values in eqn (i) ,we get V=24V 
I1=12A,I2=-4A,I3=6A 
The negative sign of I2 indicates that actual direction of its flow is opposite to that of 
shown in Fig. Q4. 
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5. Determine the branch currents in the network of Fig. Q.5. 
 

Fig. Q5 
 

Solution: 
Apply KCL to the closed circuit ABDA, we get 

 
Similarly, circuit BCDB GIVES 

or  

From circuit ADCEA,we get 

or  

On solving we get  and   

Current in branch AB = current in branch 

Current in branch  ; current in branch  AD  = current  in branch ; current in 

branch . 
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120mA 

10ix 

 

Self Assessment 
 

1. Use Kirchhoff’s laws to determine the values and directions of the currents flowing in each of 
the batteries and in the external resistors of the circuit shown in Fig. Q.6. Also determine the 
potential difference across the external resistors. 

Fig. Q. 6 
 

2. Find ix in the circuit shown in Fig. Q.7 
 
 
 
 

R1 R2
 

 

ix 
12mA 

 
 

Fig. Q.7 
 
 

 Source Transformation 

In network analysis it may be required to transform a practical voltage source into its equivalent 
practical current source and vice versa which are depicted in Fig.1.11. These are as explained 
follows. 

 

 
R1 V1(t) 

V 
 

 

 
  

i1(t) 
 

 
V(t) 

 
 

  

 

Applying KVL, 

     or 

i1(t) 

R1 
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R1 

R1 

i1 

i1 

Sources with equivalent terminal characteristics 
 
 

 
 
 
 
 
 

 

V V 

 
 
 

(v)  Voltage source with parallel resistance 
(vi) Current source with series resistance

 

Fig.1.11: Source Transformation 
 

Self Assessment 
1.Using successive source transformation, simplify the network shown in Fig. Q8 betweenX &Y. 

 
X 

 
2

1A 
4V 

 

1


3V 

 
 

Y 
 

Fig.Q.8 

2

3


6V 
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 Delta/Star Transformation 
 

In solving networks by the applications of Kirchhoff’s laws, one sometimes experiences great 
difficulty due to a large number of simultaneous equations that have to be solved. However such 
complicated network can be simplified by successively replacing delta meshes by equivalent star 
system and vice versa. 

 
A delta connected network of three resistances (or impedances) R12, R23, and R31 can be 
transformed into a star connected network of three resistances (or impedances) R1, R2, and R3  
as shown in Fig.1.12 using following transformations 

 

Fig.1.12: Source Transformation 
 

 
 

Note: You can observe that in each of the above expressions, resistance of each arm of 
the star is given by the product of the resistances of the two delta sides that meet at its end 
divided by the sum of the three resistances. 

 
 

 Star/Delta transformation 
 

This transformation can be easily done by the following equations 
 

 
The equivalent delta resistance between any two terminals is given by the sum of star resistances 
between those terminals plus the product of these two star resistances divide by the third star 
resistances. 
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Problems 
 

1. Calculate the equivalent resistance between the terminals A and B in the network shown in 
Fig. Q.9. 

 
Fig. Q.9 

 
Solution: 
RCS= 16/9Ω, RES=24/9Ω and RDS=12/9Ω 
RAB= 4+(16/9)+(35/9)=87/9Ω 

 

Self Assessment 
 

1. Calculate the current flowing through the 10Ω resistor of Fig. Q.10. 
 

 

Fig. Q.10 
 

2. A network of resistances is formed as shown in Fig.Q.11. Compute the network resistance 
measured between (i) A and B (ii) B and C (iii) C and A. 

Fig. Q.11 
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 Introduction to Nodal and Mesh Analysis 
 

When we want to analyse a given network, we try to pick the minimum number of variables and 
the corresponding number of equations to keep the calculations to a minimum. Thus we would 
normally work with either currents only or voltages only. This can be achieved using these two 
analyses. 

 

 Mesh or Loop Analysis 
 

Mesh Analysis involves solving electronic circuits via finding mesh or loop currents of the 
circuit. This is done by forming KVL equations for respected loops and solving the equations to 
find individual mesh currents. This method eliminates a great deal of tedious work involved in 
the branch current method. 
We simply assume clockwise current flow in all the loops and find them to analyze the circuit. 
Also any independent current source in a loop becomes the loop current. 

 
No. of loops= No. of branches - (No. of nodes-1) 

 

Circuit with independent voltage sources 
 

Fig.1.13: Mesh analysis for independent voltage sources 
 

Using KVL for the circuit as shown in Fig.1.13, at loops 1 and 2, we form KVL equations using 
the current and components in the loops in terms of the loop currents. Important thing to look at 
it is the subtraction of the opposing loop current in the shared section of the loop. 

 
Equations: 
R1∙i1 +(i1 – i2) ∙ R3 = V1 

R2 ∙ i2 + R3 ∙(i2 – i1) = -V2 

i..e. (R1+ R3)∙i1 - i2 ∙R3 = V1 

- R3 ∙ i1 + (R2 + R3)∙i2 = -V2 

 

Note: i1 and i2 are mesh current. 
I1, I2 and I3 are branch current. 
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I1 = i1; I2 = i2; I3 =( i1 - i2) 

 

Formalization: Network equations by inspection 
 

 
Use determinants and Cramer’s rule for solving network equations through manipulation of their 
co-efficients. 

 

Note: 
 

Solving equations with two unknowns 
 

Solving equations with three unknowns 
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Problems 
1. Determine the current supplied by each battery in the circuit shown in Fig. Q.12. 

 

Fig. Q.12 

Solution: 

For loop 1 we get 

20 - 5I1 - 3(I1-I2) – 5 = 0 or 8I1 - 3I2=15 

For loop 2 we have 

-4I2 + 5 - 2(I2 – I3 ) + 5 + 5 - 3(I2 - I1 ) = 0 or 3I1 -9 I2 + 2 I3 = -15 

Similarly, for loop 3, we get 

-8I3 – 30 – 5 - 2(I3 – I2 ) = 0 or 2I2 - 10I3 = 35 
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On solving, we get I1 = 765/299 A, I2 = 542/299 A and I3 = -1875/598 A 

So current supplied by each battery is 

B1=765/299 A B3 = I2+I3 = 2965/598 A B5 = 1875/598 A 

B2 = I1-I2=220/299 A B4= I2=545/299 A 

 
2. Use mesh analysis to compute the voltage V10Ω in Fig. Q.13. 

 

 

Fig. Q.13 

Solution: 
 
 

Fig. Q13.(a) 
 
 

On applying KVL to Fig. Q13.(a) , We have 

Mesh 1: 24i1-8i2-12i4-24-12=0 or 6i1-2i2-3i4=9 

Mesh 2: -8i1+29i2-6i3-15i4=-24 

Mesh 3: -6i2+16i3=0 or -3i2+8i3=0 

Mesh 4: i4=10ix=10(i2-i3) or 10i2-10i3-i4=0 
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On solving, we get 

i1=1.94A i2=0.13A  i3=0.05A i4=0.79A 

Now, we find V10Ω by ohm’s law, that is, 

V10Ω =10i3 = 10 * 0.05 = 0.5V 

 
3. Using mesh analysis, find Io for the circuit shown in Fig. Q14. 

 

4 
j4






100 i1 

I0 

-j2 
i2

 

 
 

6-90





Fig. Q.14 
 
 

Solution: 

On applying KVL, we have 

Mesh 1: 100 -4i1 + j2(i1-i2) = 0 or (2-j)i1 + ji2 = 5 

Mesh 2: -j4i2 + j2(i2-i1) - 6/-90° = 0 or –j2i1 + (-j4+j2)i2 = 6-90


I0 = (i1 - i2) 

On solving, we get 

i1= 2+j0.5 

i2=1-j0.5 

I0=1+j=1.414/45° 

 
 

 Nodal Analysis 

The node-equation method is based directly on KCL. In nodal analysis, basically we work with a 
set of node voltages. It provides a general procedure for analyzing circuits using node voltages as 
the circuit variables. 
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For the application of this method, every junction in the network where three or more branches 
meet is regarded a node. One of these is regarded as the reference node or datum node or zero- 
potential node. Hence the number of simultaneous equations to be solved becomes (n-1) where n 

is the number of independent nodes. These node equations often become simplified if all voltage 
sources are converted into current sources. 
Then we write the KCL equations for the nodes and solve them to find the respected nodal 
voltages. Once we have these nodal voltages, we can use them to further analyze the circuit. 

 

Example 
 

 

 

 

 

 

 

 

 

 

Fig.1.14: Nodal analysis for independent current sources 

On applying KCL to the circuit shown in Fig.1.14, we get 
At node 1 
1A = V1/2 + (V1-V2)/6 or 0.66V1-0.166V2 = 1A 

 
At node 2 
(V1-V2)/6 = V2/7+4A or 0.166V1 - 0.309V2 = 4A 

 
On solving, we get 
V1 = -2.01V and V2 = -14.02V 
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Problems 
 

1. Using nodal analysis, find the node voltages V1 and V2 in Fig. Q.15 
 
 

Fig. Q.15 
 
 

Solution: 
 

Applying KCL to node 1, we get 
8 – 1 - V1/3 - (V1-V2)/6 = 0 or 3V1 - V2 = 42 

 
Similarly, applying KCL to node 2, we get 
1 + (V1-V2)/6 – V2/15 – V2/10 = 0 or V1 - 2V2 = -6 

 
Solving for V1 and V2, we get 
V1 = 18V and V2 = 12V 

 
2. Use nodal analysis to determine the value of current i in the network of Fig. Q.16 

 
 

Fig. Q.16 

NETWORK THEORY

Dept. of ECE SCSVMV Page 26



 

 

Solution: 
 

Applying KCL to node 1, we get 

 

6 =  +  + 3i 

As seen,  i =  . Hence, the above equation becomes 

6 =  +  + 3   or 3V1-V2 = 24 

Similarly, applying KCL to node 2, we get 

 

 + 3i =    or  + 3    =    or 3V1 = 2V2 

From the above two equations, we get 
V1 = 16V ∴ i = 16/8 = 2A 

 

3. Find the value of the voltage v for the circuit of Fig. Q.17. 

 

Fig. Q.17 
Solution: 

 

Application of KCL at Node A of the circuit below yields 

 +  = 2 or v - vx = 2 

Also by KVL 
v = vx + 2vx 

 

and by substitution 
vx + 2vx – vx = 2 or vx = 1 

and thus v = 3V 
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Self Assessment: 
 

1. Use mesh analysis to compute the current through the 6Ω resistor, and the power 
supplied (or absorbed) by the dependent source shown in Fig. Q18. 

 

Fig. Q18 
 
 

2. Use mesh analysis to find V0 in the circuit of Fig. Q19. 
 

Fig. Q19 
 

3. Use nodal analysis to compute the current through the 6Ω resistor and the power supplied 
(or absorbed) by the dependent source shown in Fig. Q20 

 
Fig.Q20 
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Super Mesh Analysis: If there is only current source between two meshes in the given network 

then it is difficult to apply the mesh analysis. Because the current source has to be converted into 

a voltage source in terms of the current source, write down the mesh equations and relate the 

mesh currents to the current source. But this is a difficult approach .This difficulty can  be 

avoided by creating super mesh which encloses the two meshes that have common current source 

Super Mesh: A super mesh is constituted by two adjacent meshes that have a common current 

source. 

Let us illustrate this method with the following simple generalized circuit. 

 

Solution: 

 

Step (1):Identify the position of current source. 
 

Here the current source is common to the two meshes 1 and 2. so, super mesh is 

nothing but the combination of meshes 1 and 2 . 

Step (2):Apply KVL to super mesh and to other meshes 

Applying KVL to this super mesh (combination of meshes 1 and 2 ) we get 

R1.I1 + R3 ( I2 – I3) = V ............. (1) 

Applying KVL to mesh 3, we get 

R3 ( I3 – I2) + R4.I3 = 0 ........... (2) 

Step (3):Make the relation between mesh currents with current source to get third equation. 

Third equation is nothing but he relation between I , I1 and I2 which is 

I1 - I2 = I ........... (3) 
 

Step(4): Solve the above equations to get the mesh currents. 
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Example(1): Determine the current in the 5 Ω resistor shown in the figure below. 
 

Solution: 

 

Step(1): Here the current source exists between mesh(2) and mesh(3).Hence, super mesh is the 

combination of mesh(2) and mesh(3) .Applying KVL to the super mesh ( combination of mesh 2 

and mesh 3 after removing the branch with the current source of 2 A and resistance of 3 Ω ) we 
get : 

10( I2– I1) + 2.I2 + I3 + 5( I3 – I1) = 0 

-15.I1 +12 I2 + 6.I3 = 0 .................. (1) 

Step (2): Applying KVL first to the normal mesh 1 we get : 
 

10( I1 – I2) + 5( I1 – I3) = 50 
 

15.I1 –10. I2 – 5.I3 = 50 ................... (2) 
 

Step (3): We can get the third equation from the relation between the current source of 2 A , and 

currents I2 & I3 as : 

I2 - I3 = 2 A .................. (3) 
 

Step (4): Solving the above three equations for I1, I2 and I3 we get I1 = 19.99 A I2 = 17.33 A 

and I3 = 15.33 A 

The current in the 5 Ω resistance = I1 - I3 = 19.99 - 15.33 = 4.66 A 
 

Example(2): Write down the mesh equations for the circuit shown in the figure below and find 

out the values of the currents I1, I2 and I3 
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Solution: In this circuit the current source is in the perimeter of the circuit and hence the first 

mesh is ignored. So, here no need to create the super mesh. 

Applying KVL to mesh 1 we get : 
 

3( I2 – I1) + 2( I2 – I3) = -10 
 

-3.I1 +5.I2 – 2.I3 = -10 ............. (1) 
 

Next applying KVL to mesh 2 we get : 
 

I3 + 2( I3– I2) = 10 
 

-2.I2 +3.I3 = -10 .............. (2) 
 

And from the first mesh we observe that....... I1 = 10 A ............. (3) 
 

And solving these three equations we get : I1 = 10 A, I2 = 7.27 A, I3 = 8.18 A 
 

Nodal analysis: 
 

Nodal analysis provides another general procedure for analyzing circuits nodal voltages as the 

circuit variables. It is preferably useful for the circuits that have many no. of nodes. It is 

applicable for the both planar and non planar circuits. This analysis is done by using KCL and 

Ohm's law. 

Node: It is a junction at which two or more branches are interconnected. 
 

Simple Node: Node at which only two branches are interconnected. 

Principal Node: Node at which more than two branches are interconnected. 

Nodal analysis with example: 

Determination of node voltages: 
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Procedure: 
 

Step (1): Identify the no. nodes, simple nodes and principal nodes in the given circuit. Among all 

the nodes one node is taken as reference node. Generally bottom is taken as reference node. The 

potential at the reference node is 0v. 

In the given circuit there are 3 principal nodes in which node (3) is the reference node. 
 

Step (2): Assign node voltages to the all the principal nodes except reference node and assign 

branch currents to all branches. 

 

 
Step (3): Apply KCL to those principal nodes for nodal equations and by using ohm's law 

express the node voltages in terms of branch current. 

Applying KCL to node (1) ---- 1=I2+I3 
 

Using ohm's law, we get   (V-V1)/R1 =(V2-0)/R2 +(V1-V2)/R3. ........ (1) 
 

Applying KCL to node (2) ---- 3=I4 +I5 
 

Using ohm's law, we get (V1-V2)/R3 =(V4-0)/R4 +(V5-0)/R5 .............. (2) 
 

Step(4): Solve the above nodal equations to get the node voltages. 
 

Example: Write the node voltage equations and find out the currents in each branch of the 

circuit shown in the figure below. 
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Solution: 
 

The node voltages and the directions of the branch currents are assigned as shown in given figure. 

Applying KCL to node 1, we get: 5 = I10+ I3 

5= (V1-0)/10 +(V1-V2)/3 

 
V1(13/30) -V2(1/3) = 5 ...........(1) 

 

Applying KCL to node 2, we get: I3= I5 + I1 
 

(V1-V2)/3 = (V2 -0)/5 + (V2-10) /1 

 
V1(1/3)-V2(23/15) = -10 ............... (2) 

 

Solving the these two equations for V1 and V2 we get : 
 

V1 = 19.85 V and V2 = 10.9 V and the currents are : 

I10= V1/10 = 1.985A 

I3 = (V1-V2)/3 = (19.85-10.9)/3 = 2.98A 

I5 = V2/5 = 10.9/5 =2.18A 

I1 = (V2-10) = (10.9-10)/1 = 0.9A 

 
Super Node Analysis: If there is only voltage source between two nodes in the given network 

then it is difficult to apply the nodal analysis. Because the voltage source has to be converted into 

a current source in terms of the voltage source, write down the nodal equations and relate the 

node voltages to the voltage source. But this is a difficult approach .This difficulty can  be 

avoided by creating super node which encloses the two nodes that have common  voltage  

source. 

Super Node: A super node is constituted by two adjacent nodes that have a common voltage 

source. 

Example: Write the nodal equations by using super node analysis. 
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Procedure: 

 

Step(1):Identify the position of voltage source.Here the voltage source is common to the two 

nodes 2 and 3.so, super node is nothing but the combination of nodes 2 and 3 . 

Step (2):Apply KCL to super node and to other nodes. 

Applying KCL to this super node (combination of meshes 2 and 3 ), we get 

(V2-V1)/R2 + V2/R3 + (V3-Vy)/R4 + V3/R5 = 0 .............. (1) 

Applying KVL to node 1 ,we get 
 

I = V1/R1 + (V1-V2)/R2................. (2) 

Step (3): Make the relation between node voltages with voltage source to get third equation. 

Third equation is nothing but the relation between VX , V2 and V3 which is 

V2 - V3 = Vx ............. (3) 

Step (4): Solve the above nodal equations to get the node voltages. 
 

Example: Determine the current in the 5 Ω resistor shown in the circuit below 
 

 
Solution: 

 

Applying KCL to node 1: 10 = V1/3 + (V1-V2)/2 

V1 [ 1/3 + 1/2 ] - V2 /2 = 10 
 

0.83 V1 - 0.5 V2 = 10 ................ (1) 
 

Next applying KCL to the super node2&3 : 

(V2-V1)/2 + V2/1 + (V3-10)/5 + V3/2 = 0 

-V1/2 + V2(1/2 + 1) V3(1/5 + 1/2) = 2 

0.5 V1 + 1.5V2 + 0.7 V3 = 2 ....................... (2) 

and the third and final equation is: 

V2 - V3 = 20 .................... (3) 
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Solving the above three equations we get V3 = -8.42 V 
 

The current through the 5 Ω resistor I5 = [-8.42 -10 

] /5 = -3.68 A The negative sign indicates that the 

current flows towards the node 3. 
 

 

 
Assignment Questions: 

3. Calculate the current flowing through the 10Ω resistor of Fig. Q.9. 
 

 

Fig. Q.9 
 

2 Using Kirchhoff’s Current Law and Ohm’s law, find the magnitude and polarity 
of voltage V in Fig. Q10 

 

Fig. Q10 
 

3.A network of resistances is formed as shown in Fig.Q.10. Compute the network 
resistance measured between (i) A and B (ii) B and C (iii) C and A. 

Fig. Q.10 
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6. Determine the current supplied by each battery in the circuit shown in Fig. Q.11. 
 

Fig. Q.11 
5.Use nodal analysis to determine the value of current i in the network of Fig. Q.12 
 
 

Fig. Q.12 
 

Conclusion: 
   In this topic learner will be able to apply knowledge of KVL.KCL, Star to delta and 
Delta to star to solve numerical based on network simplification and it will be used to analyze the 
same.  
 
    Reference: 
[1].Sudhakar, A., Shyammohan, S. P.; “Circuits and Network”; Tata McGraw-Hill New Delhi,2000 
[2]. A William Hayt, “Engineering Circuit Analysis” 8th Edition, McGraw-Hill Education 2004 
[3]. Paranjothi SR, “Electric Circuits Analysis,” New Age International Ltd., New Delhi, 1996. 
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Post Test MCQs: 

 
1. In figure the voltage drop across the 10 Ω resistance is 10 V. The resistance R 

 
a. is 6 Ω 
b. is 8 Ω 
c. is 4 Ω 
d. cannot be found 

 
2. The resistance of the circuit shown is figure is 

 
a. More than 6 Ω 
b. 5 Ω 
c. More than 4 Ω 
d. Between 6 and 7 Ω 

3. For the network in figure, the correct loop equation for loop 3 is 

 
a. -I1 + 4I2 + 11I3 = 0 
b. I1 + 4I2 + 11I3 = 0 
c. -I1 - 4I2 + 11I3 = 0 
d. I1 - 4I2 + 6I3 = 0 
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4. A Thermister is used for 

 
a. over voltage protection 
b. automatic light control  
c. temperature alarm circuit 
d. none of the above 

5. In figure, E = 1 V (rms value). The average power is 250 mW. Then phase angle between 
E and I is 

 
a. 90° 
b. 60° 
c. 45° 
d. 30° 
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Unit-2 NETWORK THEOREM 
 

AIM: 
                    To learn techniques of solving circuits involving different active and passive elements. 
Pre-Requisites: 

 
        Knowledge of Basic Mathematics – II & Basic Electronics Engineering 

 Pre - MCQs: 
 

1. What will be the value of Req in the following Circuit? 

 
a) 11.86 ohm 
b) 10 ohm 
c) 25 ohm 
d). 11.18 ohm 

2.  What will be the value of Va in the following circuit? 

 
a) -11 V 
b). 11 V 
c) 3 V 
d) -3 V 
 

3. What will be the value of Va in the following circuit? 
 
 
a) 4.33 V 
b) 4.09 V 
c).8.67 V 
d) 8.18 V 
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Network Theorems 

Introduction: 

Complex circuits could be analysed using Ohm’s Law and Kirchoff’s laws directly, but the 
calculations would be tedious. To handle the complexity, some theorems have been developed to 
simplify the analysis. 

 

Superposition Theorem 
 

The Superposition theorem states that in any linear bilateral network containing two or more 
independent sources (voltage or current sources or combination of voltage and current sources), 
the resultant current/voltage in any branch is the algebraic sum of currents/voltages caused by 
each independent sources acting alone, with all other independent sources being replaced 
meanwhile by their respective internal resistances as shown in Fig. 2.1 (a & b). 

 

Fig. 2.1: (a) A Linear bilateral network (b) The resultant circuit 
 
 

 Procedure for using the superposition theorem 

 

Step-1: Retain one source at a time in the circuit and replace all other sources with their 
internal resistances. i.e., Independent voltage sources are replaced by 0 V (short circuit) 
and Independent current sources are replaced by 0 A (open circuit). 
Step-2: Determine the output (current or voltage) due to the single source acting alone 
using the mesh or nodal analysis. 
Step-3: Repeat steps 1 and 2 for each of the other independent sources. 
Step -4: Find the total contribution by adding algebraically all the contributions due to the 
independent sources. 

 
Note: Dependent sources are left intact because they are controlled by circuit variables. 

 
Example: 

Use the superposition theorem to find v in the circuit shown in Fig. 2.2. 
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Fig. 2.2 
 

Solution: Consider voltage source only as shown in Fig. 2.2(a) (current source 3A is discarded 
by open circuit) 

 

Fig. 2.2(a) 
 

 
 

Consider current source only as shown in Fig. 2.2(b) (voltage source 6V is discarded by short 
circuit) 

Fig. 2.2(b) 
 

 
Total voltage v = v1+v2 =10V 

 
 

 
Problems 

 

1. Use the superposition theorem to find I in the circuit shown in Fig. 26 
 

Fig. 26 
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Solution: 
Consider only 12V source 

 
Is1=  = 4.2359 A 

 
∴ Ir1= x 4.2359 = 0.3529 A 

 

 

 

Consider only 10V source 
 

From superposition theorem, I= Ir1+Ir2 = 0.5A 

 

Is2= =3.382A 

∴ Ir2= x 3.38235 = 0.14706 A 

 

 

2. Use the superposition theorem to find I in the circuit shown in Fig. 27 

Fig. 27 
 

Solution: 
 

Consider only 120A source 
 

Using the current divider rule, we get 
I1=120 x 50/200= 30 A 
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Consider only 40A source 
I2=40 x 150/200= 30 A 

 

 
Consider only 10V source 

 
Using Ohm’s law I3 = 10/200 = 0.05 A 

 
 
 
 
 
 
 
 
 

 

Using superposition theorem, Since I1 and I2 cancel out, I=I3=0.05 A 

 
 

3. Find the current i using superposition theorem for the circuit shown in Fig.28 

Fig. 28 
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Solution: 
 

As a first step in the analysis, we will find the current resulting from the independent voltage 
source. The current source is deactivated and we have the circuit as shown in Fig. 28(a) 

 
Applying KVL clockwise around loop shown in Fig. 3.12, we find that 

5i1+3i1-24=0 

i1= 3 A 

 

 

 

 
Fig. 28(a) 

 
As a second step, we set the voltage source to zero and determine the current i2 due to the 
current source as shown in Fig.28(b). 

 
 
 

Applying KCL at node 1, we get 

 = 

and  

we get ,  

On substituting for , we get  

Fig. 28(b) 

 
Thus, the total current i = i1 + i2 = 

 

 

4. For the circuit shown in Fig.29, find the terminal voltage Vab using superposition 
principle. 

 

Fig.29 
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Solution: 
 

Consider 4V source 
 
 

 
 

 
Consider 2A source 

Apply KVL, we get 
4- 10 x 0 - 3Vab1 - Vab1 = 0 

Vab1 = 1V 

 

 

 

 

 

 

 

Apply KVL, we get -10 x 2 + 3Vab2 + Vab2 = 0 

Vab2 = 5V 
 

 
 

 

 

 

 

 

 

 

According to superposition principle, Vab=Vab1+Vab2 = 6V 

 

Self Assessment 
 

1. Find the current flowing in the branch XY of the circuit shown in Fig.30 by superposition 
theorem. 

Fig.30 
(Ans: 1.33 A) 
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2. Apply Superposition theorem to the circuit of Fig.31 for finding the voltage drop V 
across the 5Ω resistor. 

 

Fig. 31 (Ans: 19 V) 
 

3. Find the voltage V1 for the circuit shown in Fig. 32 using the superposition principle. 

 
Fig. Q32 (Ans: 82.5 V) 

 
 

4. Find I for the circuit shown in Fig. 33 using the superposition theorem. 
 

1 1





2A 

 
 
 

 

2

Fig.33 
(Ans: 2 A) 

Vx 

2V 

 

 
2Vx 

 
 

1

 

 i 
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Remarks: Superposition theorem is most often used when it is necessary to determine the 
individual contribution of each source to a particular response. 

 
Limitations: Superposition principle applies only to the current and voltage in a linear circuit 
but it cannot be used to determine power because power is a non-linear function. 

 
 

 Thevenin’s theorem 

 

In section 2.1, we saw that the analysis of a circuit may be greatly reduced by the use of 
superposition principle. The main objective of Thevenin’s theorem is to reduce some portion of a 
circuit to an equivalent source and a single element. This reduced equivalent circuit connected to 
the remaining part of the circuit will allow us to find the desired current or voltage. Thevenin’s 
theorem is based on circuit equivalence. 

 

Fig.2.3:  (a) A Linear two terminal network (b) The Thevenin’s equivalent circuit 
 

 
The Thevenin’s theorem may be stated as follows: 

A linear two–terminal circuit can be replaced by an equivalent circuit consisting of a voltage 
source Vt in series with a resistor Rt, Where Vt is the open–circuit voltage at the terminals and Rt 
is the input or equivalent resistance at the terminals when the independent sources are turned off 
or Rt is the ratio of open–circuit voltage to the short–circuit current at the terminal pair which is 

as shown in Fig. 2.3(a & b). 

 
2.2.1 Action plan for using Thevenin’s theorem : 

1. Divide the original circuit into circuit A and circuit B 
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In general, circuit B is the load which may be linear or non-linear. Circuit A is the balance of 
the original network exclusive of load and must be linear. In general, circuit may contain 
independent sources, dependent sources and resistors or other linear elements. 

 

 
2. Separate the circuit from circuit B 
3. Replace circuit A with its Thevenin’s equivalent. 
4. Reconnect circuit B and determine the variable of interest (e.g. current ‘i’ or voltage ‘v’) 

 
 Procedure for finding Rt 

 

Three different types of circuits may be encountered in determining the resistance, Rt 
(i) If the circuit contains only independent sources and resistors, deactivate the sources and 
find Rt by circuit reduction technique. Independent current sources, are deactivated by 
opening them while independent voltage sources are deactivated by shorting them. 

 
(ii) If the circuit contains resistors, dependent and independent sources, follow the 

instructions described below: 
(a) Determine the open circuit voltage voc with the sources activated. 
(b) Find the short circuit current isc when a short circuit is applied to the terminals a-b 

(c)  

(iii) If the circuit contains resistors and only dependent sources, then 

(a) voc = 0 (since there is no energy source) 
(b) Connect 1A current source to terminals a-b and determine vab 

(c)  
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For all the cases discussed above, the Thevenin’s equivalent circuit is as shown in Fig. 2.4. 
 

 
Fig. 2.4: The Thevenin’s equivalent circuit 

 
Problems 

 

1. Using the Thevenin’s theorem, find the current i through R = 2Ω for the circuit shown in 
Fig. 34. 

Fig. 34 
 

Solution: 
 

 
Since we are interested in the current i through R, the resistor R is identified as circuit B and 
the remainder as circuit A. After removing the circuit B, circuit A is as shown in Fig.34(a). 
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Fig.34(a) 
Referring to Fig. 34(a) 

 

 

Hence  
 
 
 

To find Rt, we have to deactivate the independent voltage source. Accordingly, we get the 
circuit in Fig.34(b). 

 

Fig.34(b) 

Thus, we get the Thevenin’s equivalent circuit which is as shown in Fig.34(c) 
 

 
Fig.34(c). 

Reconnecting the circuit B to the Thevenin’s equivalent circuit as shown in Fig.34(c), we 
get 
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2. Find V0 in the circuit of Fig.35 using Thevenin’s theorem. 
 

 

Fig.35 

Solution: 

To find Voc : 

Since we are interested in the voltage across 2 kΩ resistor, it is removed from the circuit 
of Fig.35 and so the circuit becomes as shown in Fig.35(a) 

 
 
 
 
 
 
 
 
 

Fig.35(a)                        

By inspection,  

Applying KVL to mesh 2, we get 
 

Solving, we get  

Applying KVL to the path 4 kΩ -> a-b -> 3 kΩ, we get 
 

On solving,  
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To find Rt : 
 

Deactivating all the independent sources, we get the circuit diagram shown in 
Fig.35(b) 

 

 
Fig.35(b) 

 

Hence, the Thevenin equivalent circuit is as shown in Fig.35(c). 
 

 
Fig.35(c) Fig.35(d) 

If we connect the 2kΩ resistor to this equivalent network, we obtain the circuit of Fig.35(d). 
 

3. Find the Theveni’s equivalent for the circuit shown in Fig.36 with respect to terminals 
a-b. 

 
 

Fig.36 
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Fig.36(a) 

Solution: 

To find  = : 
 

Applying KVL around the mesh of Fig.36(a), we get 
 

On solving, 

Since there is no current flowing in 10Ω resistor, 
 

 
 

To find Rt : 

Since both dependent and independent sources are present, Thevenin’s resistance is found 

using the relation,  

 

Fig.36(b) 

Applying KVL clockwise for mesh 1 of Fig.36(b), we get 
 

Since  

Above equation becomes  
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Applying KVL clockwise for mesh 2, we get 
 

Solving the above two mesh equations, we get 
 

Hence  

 
Self Assessment 

1. For to the circuit shown in Fig.37, find the Thevenin’s equivalent circuit at the terminals 
a-b. 

Fig.37 
(Ans: Voc = 10V, Rt = 3.33Ω) 

 
 

2. For the circuit shown in Fig.38, find the Thevenin’s equivalent circuit between terminals 
a and b. 

 

 
Fig.38 (Ans: Voc = 32V, Rt = 4Ω) 
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3. For the circuit shown in Fig.39, find the Thevenin’s equivalent circuit between terminals 
a and b. 

 

Fig.39 (Ans: Voc = 12V, Rt = 0.5Ω) 
 
 

4. Find the Thevenin’s equivalent circuit as seen from the terminals a-b . Refer the circuit 
diagram shown in Fig.40 

 

 
Fig.40 

Hint: Since the circuit has no independent sources, i = 0 when the terminals a-b are open. 
Therefore Voc = 0. Hence, we choose to connect a source of 1 A at the terminals a-b then, after 
finding Vab, the Thevenin resistance is, 

(Ans: Voc = 0 ; Rt = 3.8Ω) 
 
 

 Norton’s theorem 

 

Norton’s theorem is the dual theorem of Thevenin’s theorem where the voltage source is 
replaced by a current source. 
Norton’s theorem states that a linear two-terminal network shown in Fig. 2.5(a) can be replaced 
by an equivalent circuit consisting of a current source iN in parallel with resistor RN, where iN is 
the short-circuit current through the terminals and RN is the input or equivalent resistance at the 
terminals when the independent sources are turned off. If one does not wish to turn off the 
independent sources, then RN is the ratio of open circuit voltage to short–circuit current at the 
terminal pair. 
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Fig.2.5: (a) A Linear two terminal network (b) The Norton’s equivalent circuit 

Fig. 2.5(b) shows Norton’s equivalent circuit as seen from the terminals a-b of the original 

circuit shown in Fig. (a). Since this is the dual of the Thevenin’s circuit, it is clear that RN = Rt 

and   . In fact, source transformation of Thevenin’s equivalent circuit leads to Norton’s 
equivalent circuit. 

 
 

 Procedure for finding Norton’s equivalent circuit: 
 

(1) If the network contains resistors and independent sources, follow the instructions below: 
(a) Deactivate the sources and find RN by circuit reduction techniques. 
(b) Find iN with sources activated. 

 
(2) If the network contains resistors, independent and dependent sources, follow the steps 

given below: 
(a) Determine the short-circuit current iN with all sources activated. 
(b) Find the open-circuit voltage voc. 

(c)  

(3) If the network contains only resistors and dependent sources, follow the procedure 
described below: 

(a) Note that iN = 0. 
(b) Connect 1A current source to the terminals a-b and find vab. 

(c)  

 
Note: Also, since = and iN = isc 

NETWORK THEORY

Dept. of ECE SCSVMV Page 56



 

 

 

Problems 

 

1. Find the Norton equivalent for the circuit of Fig. 41 

Fig. 41 
 
 

Solution: 
 

As a first step, short the terminals a-b. This results in a circuit as shown in Fig. 41(a) 

Fig. 41(a) 

Applying KCL at node a, we get 

 

So  
 

 

To find RN, deactivate all the independent sources, resulting in a circuit diagram as shown in 
Fig. Q41(b). We find RN in the same way as Rt in the Thevenin’s equivalent circuit. 
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Fig. 41 (b) 
 

 

 

Thus, we obtain Norton equivalent circuit as shown in Fig. Q41(c) 
 

Fig. 41(c) 
 

2. Find i0 in the network of Fig.42 using Norton’s theorem. 

 
Fig. 42 

 
Solution: 

 
We are interested in i0, hence the 2 kΩ resistor is removed from the circuit diagram of 
Fig. Q17. The resulting circuit diagram is shown in Fig. 42(a). 
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Fig. 42(a) Fig. 42(b) 
 

To find iN or isc: 
 

Refer Fig. 42(b). By inspection,  
 

Applying KCL at node V2: 
 

Substituting V1, we get  

 

 
To find RN: 

 
Deactivate all the independent sources. Refer Fig. 42(c). 

Fig. 42(c) 
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Hence, the Norton equivalent circuit along with 2 kΩ resistor is as shown in Fig. 42(d) 
 

Fig. 42(d) 

 
 
 

3. Refer the circuit shown in Fig.43. find the value of ib using Norton’s equivalent circuit. 
Take R = 667 Ω. 

Fig.43 
 

Solution: 
Since we want the current flowing through R, remove R from the circuit of Fig.43. The resulting 
circuit diagram is shown in Fig. 43(a). 

 

Fig.43(a) 

 
Since ia= 0A, 
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To find RN: 
The procedure for finding RN is same that of Rt in the Thevenin equivalent circuit. 

 
To find voc, make use of the circuit diagram shown in Fig.43(b). Do not deactivate any source. 

 

Fig.43(b) 

Applying KVL clockwise, we get 

 
 
 

Therefore,  

The Norton equivalent circuit along with resistor R is as shown in Fig.43(c) 
 

 

Fig. 43(c) 
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Self Assessment: 

 

1. Find V0 in the circuit of Fig.45 

 
Fig. 45 (Ans : V0 =258mV) 

 

2. For the circuit shown in Fig.46, calculate the current in the 6Ω resistance using Norton’s 
theorem. 

Fig.46 
 

(Ans : 0.5A from B to A) 
 
 

3. Find the Norton equivalent to the left of the terminals a-b for the circuit of Fig.47 

 

 
Fig.47 (Ans : isc =100mA, RN=50Ω) 
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 Maximum Power Transfer Theorem 
 

In circuit analysis, we are sometimes interested in determining the maximum power that a circuit 
can supply to the load. Consider the linear circuit A as shown in Fig. 2.6. 

 

Fig. 2.6: A Linear circuit 
 

Circuit A is replaced by its Thevenin’s equivalent circuit as seen from a and b as shown in Fig. 
2.7. 

 
 
 
 
 

 
Fig. 2.7: Thevenin’s equivalent circuit is substituted for circuit A 

 
We wish to find the value of the load RL such that the maximum power is delivered to it. 

 
The power that is delivered to the load is given by 

    (i) 

Assuming that Vt and RL are fixed for a given source, the maximum power is a function 
of RL. In order to determine the value of RL that maximizes p, we differentiate p with 
respect to RL and equate the derivative to zero. 

 

  (ii) 

which yields  

To confirm that equation (ii) is a maximum, it should be shown that  

Hence, maximum power is transferred to the load when RL is equal to the Thevenin’s equivalent 
resistance Rt. 

 
The maximum power transferred to the load is obtained by substituting  in equation (i). 

Accordingly,  
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The maximum power transfer theorem states that the maximum power delivered by a 
source represented by its Thevenin equivalent circuit is attained when the load RL is equal 
to the Thevenin’s resistance Rt. 

 

Problems 

 

1. Find RL for maximum power transfer and the maximum power that can be transferred in 
the network shown in Fig. 48. 

 

 
Fig.48 

 

Solution: 
 

Disconnect the load resistor RL and deactivate all the independent sources to find Rt. The 
resultant circuit is as shown in the Fig.48(a) 

 

Fig.48(a) 
 

 
For maximum power transfer, 

Let us next find Voc or Vt. 

 
Refer Fig.48(b) 
By inspection, 

Fig.48(b) 
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Applying KVL clockwise to the loop , we get 

 

On solving,  
 

The Thevenin’s equivalent circuit with load 
resistor RL is as shown in Fig.48(c) 

 

 
 

 

 

Fig.48(c) 
 
 

2. Find the value of RL for maximum power transfer for the circuit shown in Fig.49. Hence 
find Pmax. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 49 
 
 

 

Solution: 
 

Removing RL from the original circuit gives us the 
circuit diagram shown in Fig.49(a) 

Fig.49(a) 
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To find Voc : 

KCL at node A : 
 

 
Hence, 

 
To find Rt, refer Fig.49(b) we need to compute isc with all independent sources 
activated. 

 
KCL at node A: 

 

 

 

 
Hence,  

 

Hence, for maximum power transfer 
RL =Rt = 3Ω. Fig.49(b) 
The Thevenin’s equivalent circuit with RL = 3Ω 
inserted between the terminals a-b gives the network 
shown in Fig.49(c). 

 

 

 

 
Fig.49(c). 
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Self Assessment 

 

1. Find the value of RL for maximum power transfer in the circuit shown in Fig.50. Also 
find Pmax. 

 
Fig.50 

(Ans: Pmax = 625mW) 
 

2. Find the value of RL in the network shown in Fig.51 that will achieve maximum 
power transfer, and determine the value of the maximum power. 

 

Fig.51 
(Ans: Pmax = 81mW) 

 

3. Refer to the circuit shown in Fig.52 
(a) Find the value of RL for maximum power transfer. 
(b) Find the maximum power that can be delivered to RL. 

 

Fig.52 
(Ans: RL=2.5Ω, Pmax = 2250W) 
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We have earlier shown that for a resistive network, maximum power is transferred from 
a source to the load, when the load resistance is set equal to the thevenin’s resistance with 
thevenin’s equivalent source. Now we extend this result to the ac circuits. 

 

 
Fig. 2.8: (a)Linear circuit (b) Thevenin’s equivalent circuit 

 
 

In Fig. 2.8(a), the linear circuit is made up of impedances, independent and dependent 
sources.This linear circuit is replaced by its thevenin’s equivalent circuit as shown in 
Fig. 2.8(b). 
In rectangular form, the thevenin impedance Zt and the load impedance ZL are 

 

and  
 

The current through the load is 

 

 
The phasors I and Vt are the maximum values. The corresponding RMS values are obtained 
by dividing the maximum  values by . Also, the RMS value of phasor current flowing in the 

load must be taken for computing the average power delivered to the load. 
The average power delivered to the load is given by 

 

 

Our idea is to adjust the load parameters RL and XL so that P is maximum. To do this, we 

get and equal to zero. 
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Setting  gives (ii) 

and setting  gives (iii) 

Combining equations (ii) and (iii), we can conclude that for maximum average power 
transfer, ZL must be selected such that  and  . That is the maximum average 

power of a circuit with an impedance Zt that is obtained when ZL is set equal to complex 
conjugate of Zt . 

 

Setting  and  in equation (i), we get the maximum average power as 
 

In a situation where the load is purely real, the condition for maximum power transfer is 
obtained by putting  in equation (iii). That is, 

 

Hence for maximum average power transfer to a purely resistive load, the load resistance is 
equal to the magnitude of thevenin impedance. 

Maximum average power can be delivered to ZL only if . 

 is the complex conjugate of ZL 

 
Problems 

1. Find the load impedance that transfers the maximum power to the load for the circuit 
shown in Fig.53 

Fig.53 
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Solution: 

We select, for maximum power transfer. 

Hence  
 
 
 
 
 

2. For the circuit of Fig.54, what is the value of ZL that will absorb the maximum average 
power? 

 

Fig.54 
 

Solution: 
Disconnecting ZL from the original circuit we get the circuit as shown in Fig.54(a). The first step 
is to find Vt. 

 
 
 

 

 

 

 
 

Fig.54(a). 

The next step is to find ZL. This requires deactivating the independent voltage source of 
Fig.54(b) 

 

 

 
 

Fig.54(b) 
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The value of ZL for maximum average power absorbed is 
 

 

The Thevenin’s equivalent circuit along with ZL is as shown in Fig.54(c) 
 

 

 
Fig.54(c) 

 
Self Assessment 

1. Find the load impedance that transfers the maximum average power to the load and 
determine the maximum average power transferred to the load ZL shown in Fig.55. 

Fig.55 
(Ans: Pmax= 6W) 
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2.5 Reciprocity theorem 
 

The reciprocity theorem states that in a linear bilateral single source circuit, the ratio of 
excitation to response is constant when the positions of excitation and response are interchanged. 

 
Conditions to be met for the application of reciprocity theorem: 
(i) The circuit must have a single source. 
(ii) Dependent sources are excluded even if they are linear. 
(iii) When the positions of source and response are interchanged, their directions should be 
marked same as in the original circuit. 

 
 

Problems 
 

1. In the circuit shown in Fig.57, find the current through 1.375 Ω resistor and hence verify 
reciprocity theorem. 

 

 

Fig.57 
 
 
 

Solution: 
 
 

 
Apply KVL to Fig.57(a) 

 
KVL clockwise for mesh 1: KVL clockwise for mesh 2: KVL clockwise for mesh 3: 

 

                              Fig.57(a) 
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Using Cramer’s rule, we get  
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Verification using reciprocity theorem: 
The circuit is redrawn by interchanging the positions of excitation and response. The new circuit is 
shown in Fig.57(b) 

 
 
 
 
 
 
 
 

                               Fig.57(b) 
 
 
 

1. TELLEGEN‟S THEOREM: 
 

Dc Excitation: 

 

Tellegen‘s theorem states algebraic sum of all delivered power must be equal to sum of all 
received powers.According to Tellegen‘s theorem, the summation of instantaneous powers for the n 
number of branches in an electrical network is zero. Are you confused? Let's explain. Suppose n number 
of branches in an electrical network have i1, i2, i3…. in respective instantaneous currents through them. 
These currents satisfy Kirchhoff's Current Law. Again, suppose these branches have instantaneous 
voltages across them are v1, v2, v3, vn respectively. Ifthese voltages across these elements satisfy 
Kirchhoff Voltage Law then, 

 
 
vk is the instantaneous voltage across the kth branch and ik is the instantaneous current flowing through 
this branch. Tellegen‟s theorem is applicable mainly in general class of lumped networks that consist of 
linear, non-linear, active, passive, time variant and time variant elements. 
 
This theorem can easily be explained by the following example. 
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In the network shown, arbitrary reference directions have been selected for all of the 

branch currents, and the corresponding branch voltages have been indicated, with positive 
reference direction at the tail of the current arrow. For this network, we will assume a set of 
branch voltages satisfy the Kirchhoff voltage law and a set of branch current satisfy Kirchhoff 
current law at each node.We will then show that these arbitrary assumed voltages and currents 
satisfy the equation. 

 
 

And it is the condition of Tellegen’s theorem. In the network shown in the figure, let v1, v2 
and v3 be 7, 2 and 3 volts respectively. Applying Kirchhoff Voltage Law around loop ABCDEA. 
We see that v4 = 2 volt is required. Around loop CDFC, v5 is required to be 3 volt and around 
loop DFED, v6 is required to be 2. We next apply Kirchhoff's Current Law successively to nodes 
B, C and D. At node B let ii = 5 A, then it is required that i2 = - 5 A. At node C let i3 = 3 A and 
then i5 is required to be - 8. At node D assume i4 to be 4 then i6 is required to be - 9. Carrying out 
the operation of equation, 
 
We get, 
 

 
Hence Tellegen’s theorem is verified. 
 
 
 
 
 
 
 
Conclusion: 

   
With help of Network Theorems one can find  the  choice  of load resistance RL that results in 
the maximum power transfer to the load. On the other hand, the effort necessary to solve this 
problem-using node or mesh analysis methods can be quite complex and tedious  from 
computational point of view. 
 
    Reference: 

NETWORK THEORY

Dept. of ECE SCSVMV Page 75



 

 

[1].Sudhakar, A., Shyammohan, S. P.; “Circuits and Network”; Tata McGraw-Hill New 
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Post Test MCQs: 

 

 

1.The equation where v1, v2 ... vb are the instantaneous branch voltages and i1, i2 ... 
ib are the instantaneous branch currents pertains to 

 
a. Compensation theorem 
b. Superposition  theorem 
c. Tellegen's theorem 
d. Reciprocity theorem 

 
2.The reading of the voltmeter in figure will be __________ volt. 

 
 

a. 100 
b. 150 
c. 0 
d. 175 

 
3.A circuit is replaced by its Thevenin's equivalent to find current through a certain branch. If 
VTH = 10 V and RTH = 20 Ω, the current through the branch 
 

a. will always be 0.5 A 
b. will always be less than 0.5 A 
c. will always be equal to or less than 0.5 A 
d. may be 0.5 A or more or less 
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4. Given Is = 20 A, Vs = 20 V, the current I in the 3 Ω resistance is given by 

 
       a. 4 A 
       b. 8 A 
       c. 8 A 
       d, 16 A 
 
5. For maximum transfer of power, internal resistance of the source should be 

 
a. equal to load resistance 
b. less than the load resistance 
c. greater than the load resistance 
d. none of the above 

 
6.Tellegen's theorem is applicable to 
 

a. circuits with passive elements only 
b. circuits with linear elements only 
c. circuits with time invariant elements only 
d. .circuits with active or passive, linear or nonlinear and time invariant or time varying 

elements 
 
7.  Assertion (A): Millman's theorem helps in replacing a number of current sources in parallel     

 by a single current source. 
Reason (R): Maximum power transfer theorem is applicable only for dc, circuits. 

 
a. Both A and R are true and R is correct explanation of A 
b. Both A and R are true and R is not the correct explanation of A 
c. .A is true but R is false 
d. A is false but R is true 

 
8. “Any number of current sources in parallel may be replaced by a single current source whose 
current is the algebraic sum of individual currents and source resistance is the parallel 
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combination of individual source resistances”. 
The above statement is associated with. 

a. Thevenin’s theorem 
b. .Millman’s theorem. 
c. Maximum power transfer theorem 
d. None of the above. 

 
 
9. Superposition theorem can be applied only to circuits having 
      a. Resistive elements 
      b. Passive elements 
       c. Nonlinear elements 
      d. .Linear bilateral elements 
 
10. A nonlinear network does not satisfy 

       a. Superposition condition 
       b. Homogeneity condition 
       c. Both homogeneity as well as superposition condition 
        d. Homogeneity, superposition and associative condition. 
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                          UNIT III 
TWO PORT NETWORKS AND FILTERS DESIGN 

AIM: 

To analyze the behavior of the circuit’s response in time domain 

    Pre-Requisites: 

 
        Knowledge of Basic Mathematics – II & Basic Electronics Engineering 

     Pre - MCQs: 

1.In figure, the power associated with 3 A source is 

 

a. 36 W 

b. 24 W 

c. 16 W 

d. 8 W 

Answer: Option B 

Explanation: 

Voltage across 4Ω resistance = source voltage = 8V. Power = 8 X 3 = 24 W. 

          2. In figure, the value of R should be 

   

 

a. 0.2 Ω 

b. 0.1 Ω 

c. 0.05 Ω 

d. 0.1 Ω 

Answer: Option B 

Explanation: 
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3. In figure, A is ideal ammeter having zero resistance. It will read __________ ampere. 

 

a. 2 

b2.5 

c. 3 

d.4 

Answer: Option C 

Explanation: 

 

 

INTRODUCTION: 

A pair of terminals through which a current may enter or leave a network is known as a port. Two-terminal 

devices or elements (such as resistors, capacitors, and inductors) result in one-port networks. Most of the circuits 

we have dealt with so far are two-terminal or one-port circuits, represented in Figure 2(a). We have considered 

the voltage across or current through a single pair of terminals—such as the two terminals of a resistor, a 

capacitor, or an inductor. We have also studied four-terminal or two-port circuits involving op amps, transistors, 

and transformers, as shown in Figure 2(b). In general, a network may have n ports. A port is an access to the 

network and consists of a pair of terminals; the current entering one terminal leaves through the other terminal so 

that the net current entering the port equals zero. 

 
Figure 2: (a) One-port network, (b) two-port network. 
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A pair of terminals through which a current may enter or leave a network is known as a port. A port is an access 

to the network and consists of a pair of terminals; the current entering one terminal leaves through the other 

terminal so that the net current entering the port equals zero. There are several reasons why we should study 

two-ports and the parameters that describe them. For example, most circuits have two ports. We may apply an 

input signal in one port and obtain an output signal from the other port. The parameters of a two-port network 

completely describe its behavior in terms of the voltage and current at each port. Thus, knowing the parameters 

of a two port network permits us to describe its operation when it is connected into a larger network. Two-port 

networks are also important in modeling electronic devices and system components. For example, in electronics, 

two-port networks are employed to model transistors and Op-amps. Other examples of electrical components 

modeled by two-ports are transformers and transmission lines. 

Four popular types of two-port parameters are examined here: impedance, admittance, hybrid, and transmission. 

We show the usefulness of each set of parameters, demonstrate how they are related to each other 

IMPEDANCE PARAMETERS: 

Impedance and admittance parameters are commonly used in the synthesis of filters. They are also useful in the 

design and analysis of impedance-matching networks and power distribution networks. We discuss impedance 

parameters in this section and admittance parameters in the next section. 

A two-port network may be voltage-driven as in Figure 3 (a) or current-driven as in Figure 3(b). From either 

Figure 3(a) or (b), the terminal voltages can be related to the terminal currents as 

V1=Z11I1+Z12I2 

V2=Z21I1+Z22I2 

Where the z terms are called the impedance parameters, or simply z parameters, and have units of ohms. 
 
 

The values of the parameters can be evaluated by setting I1 = 0 (input port open-circuited) or I2 = 0 (output port 

open-circuited). 
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Since the z parameters are obtained by open-circuiting the input or output port, they are also called the open- 

circuit impedance parameters. Specifically, 

 
z11 = Open-circuit input impedance 

z12 = Open-circuit transfer impedance from port 1 to port 2 z21 

= Open-circuit transfer impedance from port 2 to port 1 z22 = 

Open-circuit output impedance 

We obtain z11 and z21 by connecting a voltage V1 (or a current source I1) to port 1 with port 2 open-circuited as 

in Figure 4 and finding I1 and V2; we then get 

 
 

 

Determination of the z parameters: (a) finding z11 and z21 (b) finding z12 and z22. 

Z11=V1/I1, Z21=V2/I1 

We obtain z12 and z22 by connecting a voltage V2 (or a current source I2) to port 2 with port 1 open-circuited as 

in Figure 4) and finding I2 and V1; we then get 

Z12=V1/I2, Z21=V2/I2 

The above procedure provides us with a means of calculating or measuring the z parameters. Sometimes z11 and 

z22 are called driving-point impedances, while z21 and z12 are called transfer impedances. A driving-point 

impedance is the input impedance of a two-terminal (one-port) device. Thus, z11 is the input driving-point 

impedance with the output port open-circuited, while z22 is the output driving-point impedance with the input 
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port open circuited. 

 

 

 

 

 

When z11 = z22, the two-port network is said to be symmetrical. This implies that the network has mirror like 

symmetry about some center line; that is, a line can be found that divides the network into two similar halves. 

When the two-port network is linear and has no dependent sources, the transfer impedances are equal (z12 = z21), 

and  the  two-port  is  said  to  be  reciprocal.  This  means  that  if  the  points  of  excitation  and  response  are 

interchanged, the transfer impedances remain the same. A two-port is reciprocal if interchanging an ideal voltage 

source at one port with an ideal ammeter at the other port gives the same ammeter reading. 

ADMITTANCE PARAMETERS: 

In the previous section we saw that impedance parameters may not exist for a two-port network. So there is a 
need for an alternative means of describing such a network. This need is met by the second set of parameters, 
which we obtain by expressing the terminal currents in terms of the terminal voltages. In either Figure 5(a) or 
(b), the terminal currents can be expressed in terms of the terminal voltages as 

Determination of the y parameters: (a) finding y11 and y21, (b) finding y12 and y22. 

I1=Y11V1+Y12V2 

I2=Y21V1+Y22V2 

 

 

 

 

 

The Y terms are known as the admittance parameters (or, simply, y parameters) and have units of Siemens 

The values of the parameters can be determined by setting V1 = 0 (input port short-circuited) or V2 = 0 (output 
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port short-circuited). Thus, 

 

 
 
 

Since the y parameters are obtained by short-circuiting the input or output port, they are also called the short- 

circuit admittance parameters. Specifically, 

y11 = Short-circuit input admittance 

y12 = Short-circuit transfer admittance from port 2 to port 1 

y21 = Short-circuit transfer admittance from port 1 to port 2 

y22 = Short-circuit output admittance 

We obtain y11 and y21 by connecting a current I1 to port 1 and short-circuiting port 2 and finding V1And I2. 

Similarly, we obtain y12 and y22 by connecting a current source I2 to port 2 and short-circuiting port 1 and 

finding I1 and V2, and then getting 

This procedure provides us with a means of calculating or measuring the y parameters. The impedance and 

admittance parameters are collectively referred to as admittance parameters 

 
HYBRID PARAMETERS: 

 
The z and y parameters of a two-port network do not always exist. So there is a need for developing another set 

of parameters. This third set of parameters is based on making V1 and I2 the dependent variables. Thus, we 

obtain 
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Or in matrix form, 
 

 
The h terms are known as the hybrid parameters (or, simply, h parameters) because they are a hybrid 

Combination of ratios. They are very useful for describing electronic devices such as transistors; it is much  

easier to measure experimentally the h parameters of such devices than to measure their z or y parameters. The 

hybrid parameters are as follows. 

It is evident that the parameters h11, h12, h21, and h22 represent impedance, a voltage gain, a current gain, and 

admittance, respectively. This is why they are called the hybrid parameters. To be specific, 

h11  = Short-circuit input impedance 

h12 = Open-circuit reverse voltage gain 

h21 = Short-circuit forward current gain 

h22 = Open-circuit output admittance 

 
The procedure for calculating the h parameters is similar to that used for the z or y parameters. We apply a 
voltage or current source to the appropriate port, short-circuit or open-circuit the other port, depending on the 
parameter of interest, and perform regular circuit analysis. 

 

TRANSMISSION PARAMETERS: 

 

 
Since there are no restrictions on which terminal voltages and currents should be considered independent and 

which should be dependent variables, we expect to be able to generate many sets of parameters. Another set of 

parameters relates the variables at the input port to those at the output port. 

 
 

 
Thus, 
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The above Equations are relating the input variables (V1 and I1) to the output variables (V2 and −I2). Notice that 

in computing the transmission parameters, −I2 is used rather than I2, because the current is considered to be 

leaving the network, as shown in Figure 6. This is done merely for conventional reasons; when you cascade two- 

ports (output to input), it is most logical to think of I2 as leaving the two-port. It is also customary in the power − 

industry to consider I2 as leaving the two-port. 

 

Terminal variables used to define the ABCD parameters. 

The two-port parameters in above equations provide a measure of how a circuit transmits voltage and current 

from a source to a load. They are useful in the analysis of transmission lines (such as cable and fiber) because 

they express sending-end variables (V1 and I1) in terms of the receiving-end variables (V2 and −I2). For this 

reason, they are called transmission parameters. They are also known as ABCD parameters. They are used in the 

design of telephone systems, microwave networks, and radars. 

The transmission parameters are determined as 

 
Thus, the transmission parameters are called, specifically, 

A = Open-circuit voltage ratio 

B = Negative short-circuit transfer impedance 

C = Open-circuit transfer admittance 

D = Negative short-circuit current ratio 

A and D are dimensionless, B is in ohms, and C is in Siemens. Since the transmission parameters provide a 

direct relationship between input and output variables, they are very useful in cascaded networks. 
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Condition of symmetry: 

A two port network is said to be symmetrical if the ports can be interchanged without port voltages and currents 

Condition of reciprocity: 

A two port network is said to be reciprocal, if the rate of excitation to response is invariant to an interchange of 

the position of the excitation and response in the network. Network containing resistors, capacitors and inductors 

are generally reciprocal 

Condition for reciprocity and symmetry in two port parameters: 

In Z parameters a network is termed to be reciprocal if the ratio of the response to the excitation remains 
unchanged even if the positions of the response as well as the excitation are interchanged. 
A two port network is said to be symmetrical it the input and the output port can be interchanged without  

altering the port voltages or currents. 

 
Parameter Condition for reciprocity Condition for symmetry 

Z 
Z Z 

12  21 Y 
Z Z 

22  11 Y 

Y 
Y 

12  21 
Y 

11  22 

h 
h h 

11 21 
h h 

11 21 

ABCD AD - BC = 1 A  = D 

 
 

Interconnecting Two-Port Networks: 

Two-port networks may be interconnected in various configurations, such as series, parallel, or cascade 

connection, resulting in new two-port networks. For each configuration, certain set of parameters may be more 

useful than others to describe the network. A series connection of two two-port networks a and b with open- 

circuit impedance parameters Za and Zb, respectively. In this configuration, we use the Z-parameters since 

they are combined as a series connection of two impedances. 

 
 

 
 

The Z-parameters of the series connection are Z 11= Z11A + Z11B 

Or in the matrix form [Z]=[ZA]+[ZB] 

 
 
 

NETWORK THEORY

Dept. of ECE SCSVMV Page 87



 

Parallel Connection 

[Y] = [YA] + [YB] 

 
Cascade Connection 

 
 

RELATIONSHIPS BETWEEN PARAMETERS: 

Since the six sets of parameters relate the same input and output terminal variables of the same two-port 

network, they should be interrelated. If two sets of parameters exist, we can relate one set to the other set. Let us 

demonstrate the process with two examples. 

Given the z parameters, let us obtain the y parameters. 
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Constant – K Low Pass Filter: 

 

A network, either T or \[\pi\], is said to be of the constant-k type if Z1 and Z2 of the network satisfy the relation 

 

Z1Z2 = k
2
 

 
Where Z1 and Z2 are impedance in the T and [pi] sections as shown in Fig. Equation 17.20 states that Z1 and Z2 

are inverse if their product is a constant, independent of frequency. k is a real constant, that is the resistance. k is 

FILTERS  

 
PASSIVE FILTERS: 

Frequency-selective or filter circuits pass to the output only those input signals that are in a desired range of 

frequencies (called pass band). The amplitude of signals outside this range of frequencies (called stop band) is 

reduced (ideally reduced to zero). Typically in these circuits, the input and output currents are kept to a small 

value and as such, the current transfer function is not an important parameter. The main parameter is the voltage 

transfer function in the frequency domain, Hv (jω) = Vo/Vi. As Hv (jω) is complex number, it has both a 

magnitude and a phase, filters in general introduce a phase difference between input and output signals. To 

minimize the number of subscripts, hereafter, we will drop subscript v of Hv. Furthermore, we concentrate on 

the ‖open-loop‖ transfer functions, Hvo, and denote this simply by H(jω). 

 
Low-Pass Filters: 

An ideal low-pass filter‘s transfer function is shown. The frequency between the pass- and-stop bands is called the cut-off 
frequency (ωc). All of the signals with frequencies below ωc are transmitted and all other signals are stopped. 

In practical filters, pass and stop bands are not clearly defined, |H(jω)| varies continuously from its maximum toward zero. 

The cut-off frequency is, therefore, defined as the frequency at which |H(jω)| is reduced to 1/√2 =0.7 of its maximum value. 

This corresponds to signal power being reduced by 1/2 as P ∝ V 2. 

 
Band-pass filters: 

A band pass filter allows signals with a range of frequencies (pass band) to pass through and attenuates signals 

with frequencies outside this range. 

often termed as design impedance or nominal impedance of the constant k-filter. 
 
 

 

19 
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as 

Z1 = -4Z2 at cut-off frequency, the pass band lies between the frequencies at which Z1 = 0, and Z1=-4Z2. 

All the frequencies above ƒc lie in a stop or attenuation band 

The characteristic impedance of a \[\pi\]-network is given by 

Constant K-High Pass Filter: 

Constant K-high pass filter can be obtained by changing the positions of series and shunt arms of the networks 

 

The constant k, T or \[\pi\] type filter is also known as the prototype because other more complex networks can 

be derived from it. Where Z1 = jωL and Z2 = 1/jωC. Hence Z1Z2= \[{L \over C}={k^2}\] which is independent  

of frequency 

The pass band can be determined graphically. The reactances of Z1 and 4Z2 will vary with frequency as drawn 

in Fig.30.2. The cut-off frequency at the intersection of the curves Z1 and 4Z2 is indicated as ƒc. On the X-axis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shown in Fig.30.1. The prototype high pass filters are shown in Fig.30.5, where Z1 =-j/ωC and Z2 = jωL. 
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Again, it can be observed that the product of Z1 and Z2 is independent of frequency, and the filter design obtained will 

be of the constant k type. The plot of characteristic impedance with respect to frequency is shown 

 
 
 
 
 
 
 
 
 
 

m-Derived T-Section: 

 
It is clear from previous chapter Figs 30.3 & 30.7 that the attenuation is not sharp in the stop band for k-type 

filters. The characteristic impedance, Z0 is a function of frequency and varies widely in the transmission band. 

Attenuation can be increased in the stop band by using ladder section, i.e. by connecting two or more identical 

sections. In order to join the filter sections, it would be necessary that their characteristic impedance be equal to 

each other at all frequencies. If their characteristic impedances match at all frequencies, they would also have the 

same pass band. However, cascading is not a proper solution from a practical point of view. This is because 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

21 

20 

practical elements have a certain resistance, which gives rise to attenuation in the pass band also. Therefore, any 

attempt to increase attenuation in stop band by cascading also results in an increase of ‗a‘in the pass band. If the 

constant k section is regarded as the prototype, it is possible to design a filter to have rapid attenuation in the stop 

band, and the same characteristic impedance as the prototype at all frequencies. Such a filter is called m-derived 

filter. Suppose a prototype T-network shown in Fig.31.1 (a) has the series arm modified as shown in Fig.31.1  

(b), where m is a constant. Equating the characteristic impedance of the networks in us has 
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Z0T = Z0T 

 
Where Z0T‘ is the characteristic impedance of the modified (m-derived) T-network. 

 
Thus m-derived section can be obtained from the prototype by modifying its series and shunt arms. The same 

technique can be applied to \[\pi\] section network. Suppose a prototype p-network shown in Fig.31.3 (a) has the 

shunt arm modified as shown in Fig.31.3 (b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The characteristic impedances of the prototype and its modified sections have to be equal for matching. 
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The series arm of the m-derived \[\pi\] section is a parallel combination of mZ1 and 4mZ2/1-m

2
 

 

m-Derived Low Pass Filter: 

In Fig.31.5, both m-derived low pass T and \[\pi\] filter sections are shown. For the T-section shown Fig.31.5 
 

 
(a) The shunt arm is to be chosen so that it is resonant at some frequency ƒx above cut-off frequency ƒc its 

The characteristic impedance of the modified (m-derived) \[\pi\]-network 
 

 

impedance will be minimum or zero. Therefore, the output is zero and will correspond to infinite attenuation at 
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this particular frequency. 
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If the shunt arm in T-section is series resonant, it offers minimum or zero impedance. Therefore, the output is 
zero and, thus, at resonance frequency or the frequency corresponds to infinite attenuation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
the m-derived \[\pi\]-section, the resonant circuit is constituted by the series arm inductance and capacitance 

The variation of attenuation for a low pass m-derived section can be verified 
 
 
 
 
 
 
 
 
 
 
 
 
 

m-derived High Pass Filter: 
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Conclusion: 

   
The two-port network and able to set up at two-port circuit and perform the calculation of 

parameters using the measured voltages and currents values. Thus, it is important for us to select the 
suitable apparatus and methods for the experiment and be careful and patient when undergoing the 
experiment and calculations so that the errors will be minimize. However, it is not necessary for the 
experimental results to be perfect matched to the theoretical results because it is  impossible, as long the 
experimental results are in tolerance range, the results are considered as accurate. 

 
Reference: 
[1].Christopher K. Alexander and Matther N.O. Sadiku (2016) 
[2]. Paranjothi SR, “Electric Circuits Analysis,” New Age International Ltd., New Delhi, 1996.  
[3].Sudhakar, A., Shyammohan, S. P.; “Circuits and Network”; Tata McGraw-Hill New Delhi, 
[4]. A William Hayt, “Engineering Circuit Analysis” 8th Edition, McGraw-Hill Education 2004 
 
Post Test MCQs: 

 
1.The two port networks are connected in cascade, the combination is to be represented as a single two-Port network. The parameters 
of the network are obtained by multiplying the individual matrix 
       a. z-parameter 
       b. h-parameter 
       c. y-parameter 
       d. ABCD parameter 
2. Two port Z parameter not exist for the circuit if 

a. Δz = 0 
b. Δz 

c. Δz = 1 
d. always exist 
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3. The pass band of a constant k filter with Z1 and Z2 as series and shunt arm impedances is given by 

a. .  
 

b .  

c.   

d.   
 

4. 
A constant k high pass filter has fc = 3000 Hz. At f = 1000 Hz, the phase shift is 

a. Zero 

b.  

c.  

d. More than  



 Which one of the following parameters does not exist for the two port network shown in the 
given figure? 

 
a. ABCD 
b. Z 
c. h 
d. y 
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UNIT – IV 

DC TRANSIENT ANALYSIS 

Aim  

To analyze the behavior of the circuit’s response in frequency domain. 
Pre-Requisites: 
 
   Knowledge of Basic Mathematics – II & Basic Electronics Engineering 
Pre - MCQs: 

1.In the circuit of figure the current through 5 Ω resistance at t = 0+ is 

 
a. 0 A 
b. 10 A 

C.. 6.67 A 
c. 5.1 A 

Answer: Option C 

Explanation: 

Current through inductance is zero. Current through 5 ohm resistance = 6.67A. 
 
 
 
 
2. A variable resistance R and capacitive reactance XC are fed by an voltage. The current locus is 
a. a semi circle in 4th quadrant 
b. .a semi circle in first quadrant 
c. a straight line in 4th quadrant 
d. a straight line first quadrant 
 
3. 
The damping coefficient for the given circuit is __________  

 
a..1.2 
b.1.4 
c.3 
d.2 
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Introduction: 

 
In this chapter we shall study transient response of the RL, RC series and RLC circuits with external DC 

excitations. Transients are generated in Electrical circuits due to abrupt changes in the operating 

conditions when energy storage elements like Inductors or capacitors are present. Transient response is the 

dynamic response during the initial phase before the steady state response is achieved when such abrupt 

changes are applied. To obtain the transient response of such circuits we have to solve the differential 

equations which are the governing equations representing the electrical behavior of the circuit. A circuit 

having a single energy storage element i.e. either a capacitor or an Inductor is called a Single order circuit 

and it’s governing equation is called a First order Differential Equation. A circuit having both Inductor and 

a Capacitor is called a Second order Circuit and it’s governing equation is called a Second order Differential 

Equation. The variables in these Differential Equations are currents and voltages in the circuitas a 

function of time. 

 
A solution is said to be obtained to these equations when we have found an expression for the 

dependent variable that satisfies both the differential equation and the prescribed initial conditions. The 

solution of the differential equation represents the Response of the circuit. Now we will find out the 

response of the basic RL and RC circuits with DC Excitation. 
 

RL CIRCUIT with external DC excitation: 
Let us take a simple RL network  subjected to external DC excitation as shown in the figure. The circuit 
consists of a battery whose voltage is V in series with a switch, a resistor R, and an inductor L. The switch is 
closed att = 0. 

 
 

 

 
Fig: RL Circuit with external DC excitation 

 
When the switch is closed current tries to change in the inductor and hence a voltage VL(t) is induced across 
the terminals of the Inductor in opposition to the applied voltage. The rate of change of current decreases 
with time which allows current to build up to it’s maximum value. 
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It  is  evident   that  the current i(t) is zero before t = 0.and   we  have   to  find  out  current i(t)for time t >0. We 
will find i(t)for time t >0 by  writing  the  appropriate  circuit  equation  and then solving  it  by separation of 
the variables and  integration. 
Applying Kirchhoff’s voltage law to the above circuit we get : 

V = vR(t)+ vL(t) 
i (t) = 0 fort <0and 

Using the standard relationships of Voltage and Current for the Resistors and Inductors we can rewrite the above 
equations as 

V  = Ri + Ldi/dt for t >0 
 

One direct  method  of  solving  such  a differential  equation  consists  of  writing  the  equation  in  such  a  way 
that  the  variables  are  separated, and then  integrating each side of the equation. The variables in the above 
equation are I and t. This equation is multiplied by dt and arranged with the variables separated as shown below: 

 
Ri. dt + Ldi = V. dt 

 
i.e Ldi= (V – Ri)dt 

 
i.e Ldi / (V – Ri) =  dt 

 
Next each side is integrated directly to get : 

 
− (L/R ) ln(V− Ri) =t + k 

 
Where  k  is  the  integration  constant. In  order  to  evaluate  k, an  initial condition  must  be  invoked. Prior  to t = 
0, i (t) is  zero, and  thus i (0−) = 0. Since the current  in  an  inductor can not change  by a  finite amount in zero 
time  with out  being  associated  with an infinite  voltage, we  have i (0+) = 0. Setting  i = 0  at t = 0,in the above 
equation we  obtain 

 
and, hence, 

Rearranging we get 

− (L/R ) ln(V) = k 

− L/R[ln(V− Ri) − ln V]= t 

ln[ (V− Ri) /V] = − (R/L)t 

Taking antilogarithm on both sides we get 
 

From which we can see that 

 
(V–Ri)/V= e−Rt/L 

i(t) = (V/R)–(V/R)e−Rt/L for  t >0 

 
Thus, an expression for the response valid for all time twould be 

 
i(t) = V/R [1− e−Rt/L ] 

 

This is normally written as: 
i(t) = V/R [1− e−t./τ ] 

 

where ‘τ’ is called the time constant of the circuit and it’s unit is seconds. 
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The voltage across the resistance and the Inductor for t >0can be written as : 

 
vR(t)   =i(t).R  = V [1− e−t./τ ] 

 
vL(t) = V −vR(t) = V −V [1− e−t./τ ] = V (e−t./τ) 

 
A plot of the current i(t) and the voltages vR(t) & vL(t) is shown in the figure below. 

 
 
 

 
Fig: Transient current and voltages in the Series RL circuit. 

 
At t = ‘τ’ the voltage across the inductor will be 

 
vL(τ) = V (e−τ /τ) = V/e = 0.36788 V 

 
and the voltage across the Resistor will be vR(τ)  = V [1− e−τ./τ ] = 0.63212 V 

 
The plots of current i(t) and the voltage across the Resistor vR(t) are called exponential growth curves and the 
voltage across the inductor vL(t)is called exponential decay curve. 

 
RCCIRCUIT with external DC excitation: 

 
A  series  RC circuit  with  external DC excitation V volts  connected  through a switch is  shown in the 
figure below. If  the  capacitor  is  not  charged  initially   i.e. it’s voltage is zero ,then  after   the  
switch S is closed at time t=0, the  capacitor  voltage  builds  up  gradually  and  reaches  it’s  steady  
state value of   V  volts  after  a finite time. The charging current will be maximum initially (since 
initially capacitor voltage is zero and voltage across a capacitor cannot change instantaneously) and 
then it will gradually comedown as the capacitor voltage starts building up. The current and the voltage 
during such charging periods are called Transient Current and Transient Voltage. 
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Fig: RC Circuit with external DC excitation 

 
Applying KVL around the loop in the above circuit we can write 

 
V = vR(t) + vC(t) 

 
Using the standard relationships of voltage and current for an Ideal Capacitor we get 

 
vC(t)  = (1/C )∫ 𝒊(𝒕)𝒅𝒕   or i(t)  =  C.[dvC(t)/dt] 

 
and using this relation,  vR(t)  can  be written asvR(t)  =  Ri(t)  = R. C.[dvC(t)/dt] 

 
Using the above two expressions for vR(t) and vC(t)the above expression for V can be rewritten as : 

 
V  =  R. C.[dvC(t)/dt] + vC(t) 

 
Or finallydvC(t)/dt + (1/RC). vC(t)  =  V/RC 

 

The inverse coefficient of vC(t) is known as the time constant of the circuit τ and is given by τ = RC and it’s 
units are seconds. 

 
The above equation is a first order differential equation and can be solved by using the same method of 
separation of variables as we adopted for the LC circuit. 

 
Multiplying the above equation dvC(t)/dt + (1/RC). vC(t)  =  V/RC 

 
both sides by ‘dt’ and rearranging the terms so as to separate the variables vC(t) and t we get: 

 
dvC(t)+ (1/RC). vC(t) . dt =  (V/RC).dt 

 
dvC(t) =   [(V/RC)−(1/RC). vC(t)]. dt 

 
dvC(t) / [(V/RC)−(1/RC). vC(t)]  = dt 

 
R. C . dvC(t) / [(V−vC(t)] = dt 
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Now integrating both sides w.r.t their variables i.e. ‘vC(t)’ on the LHS and‘t’ on the RHS we get 
 

−RC ln [V − vC(t)] = t+ k 
 

where ‘k‘is the constant of integration. In order to evaluate k, an initial condition must be invoked. Prior to t = 0, 

vC(t)is zero, and thus vC(t)(0−) = 0. Since the voltage across a capacitor cannot change by a finite amount in zero 
time, we have vC(t)(0+) = 0. Setting vC(t)= 0 att = 0, in the above equation we obtain: 

−RC ln [V] = k 
 

and substituting this value of k = −RC ln [V] in the above simplified equation−RC ln [V − vC(t)] = t+ k 
we get : 

−RC ln [V − vC(t)] = t−RC ln [V] 
 

i.e. −RC ln [V − vC(t)] + RC ln [V] = t i.e. −RC [ln {V − vC(t)}− ln (V)]= t 
 

i.e. [ln {V − vC(t)}] − ln [V]} = −t/RC 
 

i.e. ln [{V −  vC(t)}/(V)] =  −t/RC 
 

Taking anti logarithm we get[{V −  vC(t)}/(V)] =  e −t/RC
 

 
i.e vC(t)  =  V(1−  e −t/RC ) 

 
which is the voltage across the capacitor as a function of time . 

 
The voltage across the Resistor is given by :vR(t)   =  V−vC(t)   =  V−V(1 −  e −t/RC )  = V.e −t/RC

 
 

And the current through the circuit is given by: i(t)  =  C.[dvC(t)/dt]  = (CV/CR )e −t/RC=(V/R )e −t/RC
 

 
Or the othe other way: i(t) =  vR(t) /R  =  ( V.e −t/RC ) /R  =  (V/R )e −t/RC

 
 

In terms of the time constant τthe expressions for vC(t) , vR(t)and i(t) are given by : 

 
vC(t)  = V(1 −  e −t/RC ) 

 
vR(t)   =  V.e −t/RC

 
 

i(t) = (V/R )e −t/RC 
 
 

The plots of currenti(t) and the voltages across the resistor vR(t)and capacitor vC(t)are shown in the figure below. 
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Fig : Transient current and voltages in RC circuit with DC excitation. 

 
At t = ‘τ’ the voltage across the capacitor will be: 

 
vC(τ)  = V [1− e−τ/τ ] = 0.63212 V 

 
the voltage across the Resistor will be: 

 
vR(τ) = V (e−τ /τ) =  V/e   =  0.36788 V 

 
and the current through the circuit will be: 

 
i(τ) = (V/R) (e−τ /τ) = V/R. e =  0.36788 (V/R) 

 
Thus it can be seen that after one time constant the charging current has decayed to approximately 
36.8% of it’s value at t=0 . At t= 5 τ charging current will be 

 
i(5τ) = (V/R) (e−5τ /τ) = V/R. e5 =  0.0067(V/R) 

 
This value is very small compared to the maximum value of (V/R) at t=0 .Thus it can be assumed that the capacitor 
is fully charged after 5 time constants. 
The following similarities may be noted between the equations for the transients in the LC and RC 
circuits: 

 The transient voltage across the Inductor in a LC circuit and the transient current in the RC 
circuit have the same form k.(e−t /τ) 

 The transient current in a LC circuit and the transient voltage across the capacitor in the RC 
circuit have the same form k.(1−e−t /τ) 

 
But the main difference between the RC and RL circuits is the effect of resistance on the duration of the transients. 

 In  a  RL  circuit  a  large  resistance  shortens  the  transient  since  the  time  constant  τ  =L/R 
Becomes small. 

 Where as in a RC circuit a large resistance prolongs the transient since the time constant τ = RC 
becomes large. 
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Discharge transients: Consider the circuit shown in the figure below where the switch allows both 

charging and discharging the capacitor. When the switch is position 1 the capacitor gets charged to 

the applied voltage V. When the switch is brought to position 2, the current discharges from the 

positive terminal of the capacitor to the negative terminal through the resistor R as shown in the 

figure (b). The circuit in position 2 is also called source free circuit since there is no any applied 

voltage. 
 

 

Fig: RC circuit (a) During Charging (b) During Discharging 
 

The current i1 flow is in opposite direction as compared to the flow of the original charging current 

i. This process is called the discharging of the capacitor.The decaying voltage and the current are 

called the discharge transients.The resistor ,during the discharge will oppose the flow of current 

with the polarity of voltage as shown. Since there is no any external voltage source ,the algebraic 

sum of the voltages across the Resistance and the capacitor will be zero (applying KVL) .The resulting 

loop equation during the discharge can be written as 

vR(t)+vC(t) = 0 or vR(t) = - vC(t) 
 

We know that vR(t) = R.i(t) = R. C.dvC(t) /dt. Substituting this in the first loop equation we get

 R. C.dvC(t)/dt + vC(t) = 0 

The solution for this equation is given by vC(t) = Ke-t/τ where K is a constant decided by the 
initial conditions and τ =RC is the time constant of the RC circuit  

 
The value of K is found out by invoking the initial condition vC(t) = V @t = 0 

 
Then we get K = V  and hence  vC(t) =  Ve-t/τ  ; vR(t) =  -Ve-t/τ  and i(t)  = vR(t)/R =  (-V/R)e-t/τ 

 

The plots of the voltages across the Resistor and the Capacitor are shown in the figure below. 
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Fig: Plot of Discharge transients in RC circuit 
 

Decay transients: Consider the circuit shown in the figure below where the switch allows both growing 

and decaying of current through the Inductance . When the switch is position 1 the current through 

the Inductance builds up to the steady state value of V/R. When the switch is brought to position 2, the 

current decays gradually from V/R to zero. The circuit in position 2 is also called a source free 

circuitsince there is no any applied voltage. 
 

Fig: Decay Transient In RL circuit 
 

The current flow during decay is in the same direction as compared to the flow of the original growing 

/build up current. The decaying voltage across the Resistor and the current are called the decay 

transients.. Since there is no any external voltage source ,the algebraic sum of the voltages across the 

Resistance and the Inductor will be zero (applying KVL) .The resulting loop equation during the 

discharge can be written as 

vR(t)+vL(t) = R.i(t) + L.di(t)/dt = 0 and vR(t) = - vL(t) 
 

The solution for this equation is given by i(t) = Ke-t/τ where K is a constant decided by the 

initial conditions and τ =L/R is the time constant of the RL circuit. 

The value of the constant K is found out by invoking the initial condition i(t) = V/R @t = 0 Then 

we get K = V/R and hence i(t) = (V/R) . e-t/τ ; vR(t) = R.i(t)= Ve-t/τ and vL(t) = - Ve-t/τ 
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The plots of the voltages across the Resistor and the Inductor and the decaying current through the circuit 

are shown in the figure below. 
 

 

Fig: Plot of Decay transients in RL circuit 
 
 

The Concept of Natural Response and forced response: 
The RL and RC circuits we have studied are with external DC excitation. These circuits without the external 
DC excitation are called source free circuits and their Response obtained by solving the corresponding 
differential equations is known by many names. Since this response depends on the general nature of the 
circuit (type of elements, their size, their interconnection method etc.,) it is often called a Natural response. 
However any real circuit we construct cannot store energy forever. The resistances intrinsically associated with 
Inductances and Capacitors will eventually dissipate the stored energy into heat. The response eventually dies 
down,. Hence it is also called Transient response. As per the mathematician’s nomenclature the solution of such a 
homogeneous linear differential equation is called Complementary function. 
When we consider independent sources acting on a circuit, part of the response will resemble the nature of 

the particular source. (Or forcing function) This part of the response is called particular solution. , the 

steady state response or forced response. This will be complemented by the complementary function 

produced in the source free circuit. The complete response of the circuit is given by the sum of the 

complementary function and the particular solution. In other words: 
 

The Complete response = Natural response + Forced response 
 

There is also an excellent mathematical reason for considering the complete response to be composed of two 

parts—the forced response and the natural response. The reason is based on the fact that the solution of any 

linear differential equation may be expressed as the sum of two parts: the complementary solution(natural 

response) and the particular solution(forced response). 
 

Determination of the Complete Response: 

 
Let us use the same RL series circuit with external DC excitation to illustrate how to determine the 
complete response by the addition of the natural and forced responses. The circuit shown in the figure 
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Fig: RL circuit with external DC excitation 

 
was analyzed earlier, but by a different method. The desired response is the current i (t), and now we first 
express this current as the sum of the natural and the forced current, 

i = in+ i f 

The functional form of the natural response must be the same as that obtainedwithout any sources. We therefore 

replace the step-voltage source by a short circuit and call it the RL source free series loop. And in can be shown 

to be : 
in= Ae−Rt/L 

 
where the amplitude A is yet to be determined; since the initial condition applies to the complete response, 
we cannot simply assume A = i (0).We next consider the forced response. In this particular problem the forced 
response is constant, because the source is a constant Vfor all positive values of time. After the natural 
response has died out, there can be no voltage across the inductor; hence the all ythe applied voltage V appears 
across R, and the forced response is simply 

i f = V/R 

 
Note that the forced response is determined completely. There is no unknown amplitude. We next combine 
the two responses to obtain : 

i = Ae−Rt/L+ V/R 
And now we have to apply the initial condition to evaluate A. The current is zero prior to t = 0,and it cannot 
change value instantaneously since it is the current flowing through an inductor. Thus, the current is zero 
immediately after t = 0, and 

 
So that 

A + V/R = 0 
 

A= −V/R 
 

And    i = (V/R )(1 − e−Rt/L) 
 

Note carefully that A is not the initial value of i, since A = −V/R, while i (0) = 0. 
 

But In source-free circuits, A would be  the initial value of the response given by in= I0e
−Rt/L ( where I0 

=A is the current at time t=0 ). When forcing functions are present, however, we must first find the initial value of 
the complete response and then substitute this in the equation for the complete response to find A. Then this value 
of A is substituted in the expression for the total response i 
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A more general solution approach: 

 
The method of solving the differential equation by separating the variables or by evaluating the complete 
response as explained above may not be possible always. In such cases we will rely on a verypowerful 
method, the success of which will depend upon our intuition or experience. We simply guess or assume a 
form for the solution and then test our assumptions, first by substitution in the differential equation, and 
then by applying the given initial conditions. Since we cannot be expected to guess the exact numerical 
expression for the solution, we will assume a solution containing several unknown constants and select the 
values for these constants in order to satisfy the differential equation and the initial conditions. 
Many of the differential equations encountered in circuit analysis have a solution which may be 
represented by the exponential function or by the sum of several exponential functions. Hence Let us assume a 
solution for the following equation corresponding to a source free RL circuit 

 

 
in exponential form as 

[ di/dt+ (R i /L)] = 0 

 
i (t) = A.es1t 

where A ands1 are constants to be determined. Now substituting this assumed solution in the original governing 
equation we have: 

A . s1 . es1t+ A .es1t . R/L = 0 
Or 

(s1 + R/L). A.es1t= 0 
 

In order to satisfy this equation for all values of time, it is necessary that A = 0, or s1 = −∞, or s1 = −R/L. But if A = 
0 or s1 = −∞, then  every response is zero; neither can be a solution to our problem. Therefore, we must choose 

 
And our assumed solution takes on the form: 

s1 = −R/L 

 
i (t) = A.e−Rt/L 

 

The remaining constant must be evaluated by applying the initial condition i (0) = I0. Thus, A = I0, and the final 
form of the assumed solution is(again): 

i (t) = I0.e
−Rt/L

 
 
 

A Direct Route: The Characteristic Equation: 

 
In fact, there is a more direct route that we can take. To obtain the solution for the first order DE we solveds1 + 
R/L= 0   which is known as the characteristic equation and then substituting this value of s1=- R/Lin the assumed 
solution i (t) = A.es1t which is same in this direct method also. We can obtain the characteristic equation 
directly from the differential equation, without the need for substitution of our trial solution. Consider the 
general first-order differential equation: 

 
a(d f/dt) + bf = 0 

 
where a andbare constants. We substitute s for the differentiation  operator d/dt in the original 
differential equation resulting in 
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a(d f/dt) + bf = (as + b) f = 0 

 
From this we may directly obtain the characteristic equation: as + b = 0 

 
which has the single root s = −b/a. Hence the solution to our differential equation is then given by : 

 
f = A.e−bt/a 

 
This basic procedure can be easily extended to second-order differential equations which we will 
encounter for RLC circuits and we will find it useful since adopting the variable separation method is quite 
complex for solving second order differential equations. 

 
RLC CIRCUITS: 

 
Earlier, we studied circuits which contained only one energy storage element, combined with a passive network 
which partly determined how long it took either the capacitor or the inductor to charge/discharge. The 
differential equations which resulted from analysis were always first-order. In this chapter, we consider more 
complex circuits which contain both an inductor and a capacitor. The result is a second-order differential equation 
for any voltage or current of interest. What we learned earlier is easily extended to the study of these so-called 
RLC circuits, although now we need two initial conditions to solve each differential equation. There are two types of 
RLC circuits: Parallel RLC circuits and Series circuits .Such circuits occur routinely in a wide variety of 
applications and are very important and hence we will study both these circuits. 

 
Parallel RLC circuit: 

 
Let us first consider the simple parallel RLC circuit with DC excitation as shown in the figure below. 

 

 
Fig:Parallel RLC circuit with DC excitation. 

 
For the sake of simplifying the process of finding the response we shall also assume that the initial current in 

the inductor and the voltage across the capacitor are zero. Then applying the Kirchhoff’s current law 

(KCL)( i = iC +iL )to the common node we get the following integral differential equation: 
 𝐭 

(V−v)/R = 1/L∫𝐭𝐨 𝐯𝐝𝐭’ + C.dv/dt 
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 𝐭 

V/R = v/R+1/L∫𝐭𝐨 𝐯𝐝𝐭’ + C.dv/dt 

Where v = vC(t) = vL(t) is the variable whose value is to be obtained . 
When we differentiate both sides of the above equation once with respect to time we get the standard Linear 
second-order homogeneous differential equation 

 
C.(d2v/dt2)+ (1/R).(dv/dt)+ (1/L).v = 0 (d2v/dt2)+ 

(1/RC).(dv/dt)+ (1/LC).v = 0 

whose solution v(t) is the desired response. This 

can be written in the form: 

[s2 + (1/RC)s + (1/LC)].v(t)  = 0 
 

where ‘s’ is an operator equivalent to (d/dt) and the corresponding characteristic equation(as explained earlier as a 
direct route to obtain the solution) is then given by : 

 
[s2 + (1/RC)s + (1/LC)] = 0 

 
This equation is usually called the auxiliary equationor the characteristic equation, as we discussed earlier .If it can 

be satisfied, then our assume dsolution is correct. This is a quadratic equation and the roots s1 and s2are given as 

: 

 
s1= − 1/2RC+√[(1/2RC)2− 1/LC] s2= 

− 1/2RC−√[ (1/2RC)2− 1/LC ] 
 

And we have the general form of the response as : 

 
v(t) = A1e

s1t+ A2e
s2t

 
 

where s1 and s2 are given by the above equations and A1 and A2 are two arbitrary constants which are to be 
selected to satisfy the two specified initial conditions. 

 
Definition of Frequency Terms: 

 
The form of the natural response as given above gives very little insight into the nature of the curve we might 
obtain if v(t)were plotted as a function of time. The relative amplitudes of A1 and A2, for example, will certainly 
be important in determining the shape of the response curve. Further the constants s1 and s2 can be real numbers 
or conjugate complex numbers, depending upon the values of R, L, and Cin the given network. These two cases 
will produce fundamentally different response forms. Therefore, it will be helpful to make some simplifying 
substitutions in the equations for s1 and s2.Since the exponents s1tand s2t must be dimensionless, s1 and s2 must 
have the unit of some dimensionless quantity “per second.” Hence in the equations for s1 and s2 we see that the 
units of 1/2RC and 1/√LC must also be s−1(i.e., seconds−1). Units of this type are called frequencies. 

Now two new terms are defined as below : 
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which is termed as resonant frequency and 

 

ω0 = 1/√LC 

 
α = 1/2RC 

which is termed asthe exponential damping coefficient 

 

α the exponential damping coefficient is a measure of how rapidly the natural response decays or damps out to its 

steady, final value(usually zero). And s, s1, and s2, are called complex frequencies. 

We should note that s1, s2, α, and ω0 are merely symbols used to simplify the discussion of RLC circuits. They are 
not mysterious new parameters of any kind. It is easier, for example, to say “alpha” than it is to say “the 

reciprocal of 2RC.” 

 
Now we can summarize these results. 

 
The response of the parallel RLC circuit is given by : 

 

 
where 

 
 
 
 
 

and 

v(t) = A1e
s1t+ A2e

s2t .............. [1] 
 

s1= −α +√α2–ω0
2 ....................... [2] 

 
s2= −α −√α2– ω0

2........................ [3] 
 

α = 1/2RC  ..................................[4] 

 
ω0 = 1/ √LC ........... [5] 

A1 and A2must be found by applying the given initial conditions. 
We note three basic scenarios possible with the equations for s1 and s2 depending on the relative values of α 

and ω0 (which are in turn dictated by the values of R, L, and C). 
 

Case A: 

 
α > ω0,i.e when (1/2RC)2>1/LCs1  and s2  will both be negative real numbers, leading to what is referred to as an 
over damped response given by : 

v(t) = A1e
s1t+ A2e

s2t
 

 
Since s1 and s2are both negative real numbers this is the (algebraic) sum of two decreasing exponential terms. 

Sinces2 is a larger negative number it decays faster and then the response is dictated by the first term A1e
s1t. 

 
Case B : 

 
α = ω0, ,i.e when (1/2RC)2=1/LC , s1  and s2are equal  which leads to what is called a critically damped response 

given by : 
v(t) = e−αt(A1t + A2) 

 

Case C : 

NETWORK THEORY

Dept. of ECE SCSVMV Page 112



 

 

 
 

α < ω0,i.e when (1/2RC)2<1/LCboth s1  and s2  will have nonzero imaginary components, leading to what is known 
as an under damped response given by : 

 
v(t) = e−αt(A1 cosωd t + A2 sinωd t) 

 
where ωdis called natural resonant frequency and is given given by: 

 
ωd  =  √ω0

2– α2
 

 
We should also note that the general response given bythe above equations [1] through [5] describe not only the voltage 

but all three branch currents in the parallel RLC circuit; the constants A1 and A2 will be different for each, of course. 

 
Transient response of a series RLC circuit: 

 

 
Fig: Series RLC circuit with external DC Excitation 

 
Applying KVL to the series RLC circuit shown in the figure above at t= 0 gives the following basic 
relation : 

V = vR(t)  + vC(t ) + vL(t) 
 

Representing the above voltages in terms of the current iin the circuit we get the following integral differential 
equation: 

 
Ri + 1/C∫ 𝒊𝒅𝒕 + L. (di/dt)= V 

 
To convert it into a differential equation it is differentiated on both sides with respect to time and we get 

 
L(d2i/dt2)+ R(di/dt)+ (1/C)i = 0 

 
This can be written in the form 
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[S2 + (R/L)s + (1/LC)].i  = 0  where ‘s’ is an  operator equivalent to (d/dt) 

 
And the corresponding characteristic equation is then given by 

 
[s2 + (R/L)s + (1/LC)]  = 0 

 
This is in the standard quadratic equation form and the roots s1ands2 are given by 

 
s1,s2   =− R/2L±√[(R/2L)2− (1/LC)]= −α ±√(α2– ω0

2) 
 

Where α is known as the same exponential damping coefficient tand ω0is known as the same Resonant frequency 

as explained in the case of Parallel RLC circuit and are given by : 
α = R/2L   and ω0= 1/ √LC 

 
and A1 and A2must be found by applying the given initial conditions. 

 
Here also we note three basic scenarios with the equations for s1 and s2 depending on the relative sizes of α and ω0 

(dictated by the values of R, L, and C). 
 

Case A: 
α > ω0,i.e when (R/2L)2>1/LC , s1  and s2  will both be negative real numbers, leading to what is referred to as an 
over damped response given by : 

i (t) = A1e
s1t+ A2e

s2t
 

Since s1 and s2are both be negative real numbers this is the (algebraic) sum of two decreasing exponential terms. 

Sinc s2 is a larger negative number it decays faster and then the response is dictated by the first term A1e
s1t. 

 
Case B : 
α = ω0, ,i.e when (R/2L)2=1/LCs1  and s2are equal   which leads to what is called a critically damped response 

given by : 
i (t) = e−αt(A1t + A2) 

Case C : 
α < ω0,i.e when (R/2L)2<1/LC both s1  and s2  will have nonzero imaginary components, leading to what is known as 
an under damped response given by : 

 
i (t) = e−αt(A1 cosωd t + A2 sinωd t) 

 
whereωdis called natural resonant frequency and is given given by: 

 
ωd  =  √ω0

2– α2
 

 
Here the constants A1 and A2 have to be calculated out based on the initial conditions case by case. 
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Summary of the Solution Process: 

 
In summary, then, whenever we wish to determine the transient behavior of asimple three-element 
RLCcircuit, we must first decide whether it is a series or a parallel circuit, so that we may use the correct 
relationshipfor α. The two equations are 
α = 1/2RC (parallel RLC) 
α = R/2L (series RLC) 

 
Our second decision is made after comparing α with ω0, which is given for either circuit by 
ω0= 1 /√LC 

 
 Ifα > ω0, the circuit is over damped, and the natural response has the form 

 

 
where 

fn(t) = A1e
s1t+ A2e

s2t s1, 

2= −α ±√(α2–ω0
2) 

 If α = ω0, then the circuit is critically damped and 
 

fn(t) = e−αt(A1t + A2) 
 

 And finally, ifα < ω0, then we are faced with the underdamped response, 
 

 
where 

fn(t) = e−αt(A1 cosωd t + A2 sinωd t) 
 

ωd=√(ω0
2− α2) 

 
 

Solution using Laplace transformation method: 

 
In this topic we will study Laplace transformation method of finding solution for the differential 
equations that govern the circuit behavior. This method involves three steps: 

 First the given Differential equation is converted into “s” domain by taking it’s Laplace transform 
and an algebraic expression is obtained for the desired variable 

 The transformed equation is split into separate terms by using the method of Partial fraction 
expansion 

 Inverse Laplace transform is taken for all the individual terms using the standard inverse 
transforms. 

The expression we get for the variable in time domain is the required solution. 

 
For the ease of reference a table of important transform pairs we use frequently is given below. 
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Table of Important Transform pairs 

 
 

This method is relatively simpler compared to Solving the Differential equations especially for higher order 
differential equations since we need to handle only algebraic equations in ‘s’ domain. 
This method is illustrated below for the series RL,RC and RLC circuits. 

 
Series RL circuit with DC excitation: 
Let us take the series RL circuit with external DC excitation shown in the figure below. 

 
 

 
Fig: RL Circuit with external DC excitation 

 
The governing equation is same as what we obtained earlier. 

 
V  =   Ri + Ldi/dt for t >0 

Taking Laplace transform of the above equation using the standard transform functions we get 
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] [ 

 
 

V/s  =   R.I(s)+ L[sI(s) –i(0)] 
 

It may be noted here that i(0)is the initial value of the current at t=0 and since in our case at t=0 just when the 
switch is closed it is zero , the above equation becomes: 

 
V/s  =   R.I(s)+ L[sI(s)]  =  I(s)[R+ L.s] 

 

 

Or  I(s) = [ 

𝑽 
(𝑳) 

 𝑹 ]= 𝒔{𝒔+𝑳} 

 𝑨 𝑩 
+  𝑹 (Expressing in the form of Partial fractions) 𝒔 [𝒔+  ] 𝑳 

 

Where  A  = [ 
𝑽 

(𝑳) 
 𝑹 s=0 =  V/R and B = 

𝑽 
(𝑳) 

s=− (R/L) = − V/R 
{𝒔+𝑳} 𝒔 𝑨 𝑩 

Now substituting these values of A and B in the expression for I(s) = + 𝒔  𝑹 we get 
[𝒔+𝑳 ] 

I(s) = 
𝐕/𝐑 − 𝐕/𝐑 

 

 𝑹 𝒔 [𝒔+ 𝑳] 

Taking inverse transform of the above expression for I(s)using the standard transform pairs we get the 
solution for i(t) as 

 

i(t)  =  (V/R) − (V/R).e - (R/L)t =  (V/R)(1−e - (R/L)t ) 

 
Which is the same as what we got earlier by solving the governing differential equation directly. 

 
RC Circuit with external DC excitation: 

 
Let us now take the series RC circuit with external DC excitation shown in the figure below. 

 
 
 

 
Fig: RC Circuit with external DC excitation 

 

 
The governing equation is same as what we obtained earlier and is worked out again for easy understanding : 

] 
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Applying KVL around the loop in the above circuit we can write: 

 
V = vR(t) + vC(t) 

 
Using the standard relationships of voltage and current for an Ideal Capacitor we get 

 
vC(t)  = (1/C )∫ 𝒊(𝒕)𝒅𝒕   or i(t)  =  C.[dvC(t)/dt] 

 
(Assuming that the initial voltage across the capacitor vc(0) = 0 ) 

 
and using this relation,  vR(t)  can  be written asvR(t)  =  Ri(t)  = R. C.[d vC(t)/dt] 

 
Using the above two expressions for vR(t) and vC(t)the above expression for V can be rewritten as : 

 
V  =  R. C.[d vC(t)/dt] + vC(t) 

 

 
Now we will take Laplace transform of the above equation using the standard Transform pairs and rules: 

 

 
V/s =  R.C.s.vC(s) + vC(s) 

 
V/s =  vC(s) ( R.C.s.+ 1 ) 

 
vC(s)  =  (V/s )/ ( R.C.s + 1 ) 

 
vC(s)  =  (V/RC )/ [s. (s + 1/RC )] 

 
Now expanding this equation into partial fractions we get 

 
vC(s)  =  (V/RC )/ [s. (s + 1/RC )]  =  A/s + B/(s + 1/RC )  --------- (1) 

 
Where A  =(V/RC )/ ( 1/RC )]  = V and B  =  (V/RC )/ − ( 1/RC )]  =  −V 

 
Substituting these values of A and B into the above equation (1) forvC(s)we get 

 
vC(s)  = (V/s) –[V /(s + 1/RC )]  =  V [(1/s) –{1 /(s + 1/RC )}] 

 
And now taking the inverse Laplace transform of the above equation we get 

 
vC(t)  = V(1 −  e −t/RC ) 

 
which is the voltage across the capacitor as a function of time and is the same as what we obtained earlier by 
directly solving the differential equation. 

 
And the voltage across the Resistor is given by  vR(t) =  V−vC(t)   =  V−V(1 −  e −t/RC )  = V.e −t/RC
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And the current through the circuit is given by i(t)  =  C.[dvC(t)/dt]  = (CV/RC )e −t/RC =(V/R )e −t/RC
 

 
 

Series RLC circuit with DC excitation: 
 

 
Fig: Series RLC circuit with DC excitation 

 

 
The current through the circuit in the Laplace domain is given by : 

 

 

I(s) = 
(𝐕/𝐬) 

 

 

(𝐑 + 𝐋𝐬 + 𝟏/𝐂𝐬) 
 

[since L [V ] = V/sand the Laplace equivalent of the series circuit is given by Z(s)  =  (R + Ls + 1/Cs)  ] 
 

 

=   V/  (  Rs + Ls2 + 1/C )  =  ( V/L ) / [ s2 + (R/L) s +  1/LC ]   = 
( 𝐕/𝐋 ) (𝐬+𝐚)(𝐬+𝐛) 

 

Where the roots ‘a’ and ‘b’ are given by 

 
a =  −R/2L  +√ (R/2L)2– 1/LC   and b = 

−R/2L  – √ (R/2L)2– 1/LC 

It may be noted that there are three possible solutions for for I(s) and we will consider them. 

 
Case A: Both aand b are real and not equal i.e. (R/2L) > 1/√ LC 

 

 

Then I(s) can be expressed as I(s) = 
( 𝐕/𝐋 ) 

(𝐬+𝐚)(𝐬+𝐛) 

𝐊𝟏 
= 

(𝐬+𝐚) 

𝐊𝟐 
+ 

(𝐬+𝐛) 

 
WhereK1 = [ 

( 𝐕/𝐋 ) 

(𝐬+𝐛) 

 

] s= – a = 
( 𝐕/𝐋 ) (𝐛– 𝐚) 

NETWORK THEORY

Dept. of ECE SCSVMV Page 119



 

 

 

 
Where K2 = [ 

 
( 𝐕/𝐋 ) 

(𝐬+𝐚) 

 
] s= – b = 

 
( 𝐕/𝐋 ) (𝐚– 𝐛) 

 

Substituting these values of K1 and K2 in the expression for I(s) we get : 
 

 

I(s) = 
( 𝐕/𝐋 ) 

(𝐬+𝐚)(𝐬+𝐛) 

( 𝐕/𝐋 ) 𝟏 
= 

(𝐛– 𝐚)   (𝐬+𝐚) 

( 𝐕/𝐋 ) 
+ 

(𝐚– 𝐛) 

𝟏 
and 

(𝐬+𝐛) 

 

( 𝐕/𝐋 ) i(t) = 
 

 

 –at ( 𝐕/𝐋 )  –bt 
e 

(𝐛– 𝐚) 
+ e 

(𝐚– 𝐛) 
 

Case B : Both a and b are real and equal i.e. ( a=b=c ) i.e. (R/2L) = 1/√ LC I(s)  

=(V/L)/ (s+c)2when a = b = c and 

i(t)  = (V/L). t. e–ct
 

 
Case C : Both a and b are complexconjugates i.e.a = b* when (R/2L) < 1/√ LC 

 
Adopting  our standard definitions of  α =  R/2L  ω0 = 1 /√LCand  ω d= √(ω0

2− α2) 
 
 

The roots a and b are given by a = α + jωdand b = α–jωd 

 

 

Then I(s) can be expressed as I(s) = 
( 𝐕/𝐋 ) 

= 
(𝐬+𝛂  –𝐣 𝛚𝐝)   (𝐬+𝛂 + 𝐣 𝛚𝐝) 

𝐊𝟑 (𝐬+𝛂  

–𝐣 𝛚𝐝) 

𝐊𝟑∗ 
+ 

(𝐬+𝛂 +𝐣 𝛚𝐝) 
 

HereK3 =(𝐬 + 𝛂 – 𝐣 𝛚𝐝). I(s)│ s =– 𝛂 + 𝐣 𝛚𝐝 = 
( 𝐕/𝐋 ) (𝐬+𝛂 + 𝐣 𝛚𝐝) 

│ 𝐬 =– 𝛂 + 𝐣 𝛚𝐝 = 
( 𝐕/𝐋 ) 

 𝟐 𝐣 𝛚𝐝 

 

Therefore: K3 = 
( 𝐕/𝐋 ) 

 𝟐 𝐣 𝛚𝐝 and K3* = – 
( 𝐕/𝐋 ) 

 𝟐 𝐣 𝛚𝐝 
 

Now substituting these values K3 and K3* in the above expanded equation for  I(s) we get 
 

I(s) = 
( 𝐕/𝐋 ) 𝟐𝐣𝛚𝐝 

𝟏 (𝐬+𝛂–𝐣𝛚𝐝) 
– 

( 𝐕/𝐋 ) 𝟐𝐣𝛚𝐝 

𝟏 (𝐬+𝛂+ 𝐣𝛚𝐝) 
 

And now taking inverse transform of I(s) we get 
 

( 𝐕/𝐋 ) 
i(t) = 𝟐𝐣𝛚𝐝 

e–αt. ejωd t– 
( 𝐕/𝐋 ) 𝟐𝐣𝛚𝐝 

e–αt. e –jωd t 

 
( 𝐕/𝐋 ) 

i(t) = 𝛚𝐝 
e–αt [ (ejωd t–e –jωd t)/2j] 
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( 𝐕/𝐋 ) 
i(t) = 𝛚𝐝 

 
e–αt Sin ωdt 

 

Summary of important formulae and equations: 

 
RL circuit with external DC excitation ( Charging Transient ) : 

 
 i(t) = V/R [1− e−t./τ ] 

 
 vL(t) = V (e−t./τ) 

 
 vR(t) = i(t).R = V [1− e−t./τ ] 

 
Source free RL circuit ( Decay Transients) : 

 
 i(t) = (V/R) . e-t/τ ; vR(t) = R.i(t)= Ve-t/τ and vL(t) = - Ve-t/τ 

 
 
 

RC circuit with external DC excitation ( Discharge Transients ): 
 

 vC(t) = V(1 − e −t/RC ) 
 

 vR(t) =  V. e −t/RC
 

 
 i(t) =  (V/R ) e −t/RC 

 
Source free RC circuit ( Discharge transients) : 

 
 vC(t) =  Ve-t/τ  ; vR(t) =  -Ve-t/τ and i(t)  = vR(t)/R =  (-V/R)e-t/τ 

Series RLC circuit: For this circuit three solutions are possible : 

1. α > ω0, i.e when (R/2L)2 >1/ LC , s1 and s2 will both be negative real numbers, leading to what is referred 
to as an over damped response given by : 

i (t) = A1e
s1t+ A2e

s2t
 

 
 

2. α = ω0, , i.e when (R/2L)2 =1/ LC s1 and s2 are equal which leads to what is called a critically damped 

response given by : 
i (t) = e−αt(A1t + A2) 

3. α < ω0, i.e when (R/2L)2 <1/ LC both s1 and s2 will have nonzero imaginary components, leading to what 
is known as an under damped response given by : 
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i (t) = e−αt(A1 cosωd t + A2 sinωd t) 
 

where :  
 
 α = (R/2L) and is called the exponential damping coefficient 

 ω0 = 1/ √LCand is called the resonant frequency 

 ωd = √ω0
2– α2and is called the natural resonant frequency 

 

Illustrative Examples: 
 

Example 1:Find the current in a series RL circuit having R =2Ω and L = 10H when a DC voltage V 
of 100V is applied. Find the value of the current 5 secs. after the application of the DC voltage. 

 
Solution: This is a straightforward problem which can be solved by applying the formula. First let us 
find out the Time constant τ of the series LR circuit which is given by τ = L/R secs. 

 ∴ τ = 10/2 = 5 secs 
The current in a series LR circuit after the sudden application of a DC voltage is given by : 

i(t)  = V/R ( 1 – e –t/τ ) ∴ i(t)at 5 secs = 100/2 ( 1 – e –5/5 ) = 5 (1 –e –1 ) = 50 ( 1 – 1/ e ) = 31.48 
 ∴ 𝐢(𝐭)𝐚𝐭 𝟓 𝐬𝐞𝐜𝐬 =   𝟑𝟏. 𝟒𝟖 𝐀𝐦𝐩𝐬 
 

Example 2: A series RL circuit has R= 25 Ω and L = 5 Henry. A dc voltage V of 100 V is applied to this 
circuit at t = 0 secs. Find : 

(a) The equations for the charging current , and voltage across R & L 
(b) The current in the circuit 0.5 secs after the voltage is applied. 
(c) The time at which the drops across R and L are equal. 

 
Solution: The solutions for (a) and (b) are straightforward as in the earlier problem. (a)Time 

constant τ of the series LR circuit which is given by τ = L/R secs ∴ τ = 5/25 = 1/5 secs 
 The charging current is given by i(t) = V/R ( 1 – e –t/τ ) 

 
It is also given by i(t) = I ( 1 – e – t/τ ) where I is the final steady state current and is equal to  V/R 

 
= 100/25 (1 – e –t/(1/5)) = 4 ( 1 – e – 5t) Amps 

i(t) = 4 ( 1 – e – 5t ) Amps 

 The voltage across R is given by vR =i(t).R = V/R ( 1 – e –t/τ ).R = V ( 1 – e –t/τ ) 
vR=  100 (1—e—5t ) 

 The voltage drop across L can be found in two ways. 
1. Voltage across Inductor vL = L di/dt 
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2. Voltage across Inductor vL = V –vR 

But it is easier to find using the second method. ∴ vL = 100 -- 100 (1—e—5t ) 
vL = 100. e—5t 

 
(b) At time t= 0.5 secsi(t) = 4 (1–e5 t ) = 4 (1 – e – 2.5 ) = 3.67 Amps 

(c) To find out the time at which the voltages across the Inductor and the Resistor are equal we can 

equate the expressions for vR = 100 (1—e—5t ) and vL = 100.e—5t and solve for t. But the simpler 
method is, we know that since the applied voltage is 100 V the condition vR =vLwill also be 
satisfiedwhenvR =vL = 50 V. i.e vR = 100 (1—e—5t ) = 50 volts and vL= 100.e—5t = 50 V. We will solve 
the second equation [ vL = 100. e—5t = 50 V ] to get t which is easier. 

 
e—5t = 50/100 = 0.5 . 
Taking natural logarithm on both sides we get: 
--5t .ln(e) = ln 0.5 i.e --5t .1 = -0.693 i.e t = 0.693/5 = 0.139 secs 

 ∴ The voltages across the resistance and the Inductance are equal at time t = 0.139 secs 

 
Example 3: In the figure shown below after the steady state condition is reached , at time t=0 the 
switch K is suddenly opened. Find the value of the current through the inductor at time t = 
0.5 seconds. 

 

 
Solution: The current in the path acdb ( through the resistance of 40 Ω alone) is 100/40 = 
2.5Amps.( Both steady state and transient are same ) 
The steady state current through the path aefb (through the resistance of 40 Ω and inductance of 4H ) is 
also = 100/40 = 2.5 Amps. 

 
Now when the switch K is suddenly opened, the current through the path acdb( through the 
resistance of 40 Ω alone) immediately becomes zero because this path contains only resistance. But the 
current through the inductor decays gradually but now through the different path efdce The decay 
current through a closed RL circuit is given by I.e – t / τ where I is the earlier steady state current of 2.5 
amps through L and τ = L/R of the decay circuit. It is to be noted carefully here that in the decay path 

both resistors are there and hence R =40+40 = 80Ω 

Hence τ= L/R = 4/80 = 0.05 secs 
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Hence the current through the inductor at time 0.5 secs is given by i(t) @0.5secs =2.5.e – 0.5 / 0.05 
i.e i(t) @0.5secs = 2.5.e – 10 

 
i.e i(t) @0.5secs= 1.14x10 – 4 Amps 

 
Example 4: In the circuit shown below the switch is closed to position 1 at time t = 0 secs. Then at time t 
= 0.5 secs the switch is moved to position 2. Find the expressions for the current through the 
circuit from 0 to 0. 5  msecs  and beyond 0. 5 msecs. 

 
Solution: The time constant τ of the circuit in both the conditions is same and is given by τ = L/R 
= 0.5/50 = 0.01 secs 

 

 
 

1. During the time t=0 to 0.5 msecs. i(t) is given by the standard expression for growing current 

through a L R circuit: i(t)during 0 to 0.5 msecs = V/R ( 1—e –t / τ ) 
i(t)during 0 to 0.5 msecs = V/R ( 1—e –t / 0.01 ) Amps 

And the current i(t) @ t= 0.5 msecs = 10/50 ( 1-- e – 0.5x10-3 / 0.01 ) = 0.2 (1 – e—0.05 ) = 9.75 mA 
i(t) @ t = 0.5 msecs = 9.75 mA and this would be the initial current when the switch is moved to position 2 

2. During the time beyond 0.5 msecs ( switch is in position 2): The initial current is 9.75 mA . The 
standard expression for the growing currenti(t) =  V/R ( 1—e –t / τ )    is not applicable now since it has 
been derived with initial condition of i(t) =0 at t=0 where as the initial condition for the current i(t) 
now in position 2 is 9.75 mA . Now an expression for i(t) in position 2 is to be derived from first 
principles taking fresh t=0 and initial current i(0) as 9.75mA. 
The governing equation in position 2 is given by : 

50i+0.5di/dt = 5 
We will use the same separation of variables method to solve this differential equation. Dividing the 
above equation by 0.5, then multiplying by dt and separating the terms containing the two variables i 
and t we get: 
100i + di/dt = 10 i.e 100i.dt +di = 10.dt i.e di = dt ( 10 – 100i ) i.e di/ ( 10 – 100i ) = dt Now 
integrating on both sides we get 

 
--1/100 ln ( 10 -- 100i ) = t + K ----------------- (1) 
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The constant K is now to be evaluated by invoking the new initial condition i(t) = 9.75 mAat t =0 

 
--1/100 ln ( 10 – 100x9.75X10--3 ) = K = --1/100 ln ( 10 – 0.975 ) = --1/100 ln (9.025) 

 
Substituting this value of K in the above equation (1) we get 

--1/100 ln ( 10 -- 100i ) = t --1/100 ln (9.025) 
--1/100 ln ( 10 -- 100i ) + 1/100 ln (9.025) = t 

--1/100 [ln ( 10 -- 100i ) -- ln (9.025)] = t 
--1/100 . ln [ ( 10 -- 100i ) / (9.025)] = t 

ln [( 10 -- 100i ) / (9.025)] = --100t 
Taking antilogarithm to base e on both sides we get: 

( 10 -- 100i ) / (9.025)] = e--100t ( 
10 -- 100i ) = 9.025 x e--100t ( 
10 --9.025 x e--100t ) = 100i 

i = ( 10 --9.025 x e--100t )/ 100 = 10/100 -- 9.025 x e--100t /100 

 
And finally i = 0.1 –0.09. e--100t 

 
The currents during the periods t = o to 0.5 mses and beyond t = 0.5msec are shown in the figure 
below. Had the switch been in position 1 all through, the current would have reached the steady state 
value of 0.2 amps corresponding to source voltage of 10 volts as shown in the top curve. But since the 
switchis changed to position 2 the current changed it’s path towards the new steady state current of 0.1 
Amps corresponding the new source voltage of 5 Volts from 0.5 msecs onwards. 

 
 
 

 
Example 5: In the circuit shown below the switch is kept in position 1 upto 250 μsecs and then 
moved to position 2. Find 
(a) The current and voltage across the resistor at t = 100 μsecs 
(b) The current and voltage across the resistor at t = 350 μsecs 
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Solution : The time constant τ of the circuit is given by τ = L/R = 200mH/8KΩ = 25 μsec and is 
same in both the switch positions. 

 

 
 

(a) The current in the circuit upto 250 μsec ( till switch is in position 1 ) is given by : i(t) 

growing = V/R (1 – e –t / τ ) = (16/8)X10--3 (1 – e –t / 25 x10--6 ) = 2x(1 – e –t / 25 x10 –6) mA 
 

 The current in the circuit @100μsec is given by 
i(t) @100 μsec = 2x (1 – e –100 μsec / 25 μsec) mA = 2x(1 – e –4) mA = 1.9633 mA 

 
 

i(t) @100 μsec = 1.9633 m 
 

 The Voltage across the resistoris given by vR@100 μsec = R x i(t) @100 μsec 

vR@100 μsec = 8 KΩ x1.9633 mA = 15.707 V 
 

vR@100 μsec =  15.707 V 
 

(b)  
 

 The current in the circuit @350 μsec is the decaying current and is given by: 
 

i(t)Decaying= I(0).e – t / τ where I(0) is the initial current and in this case it is the growing current 

@250μsec. ( Since the switch is changed @250μsec ) The time t is to be reckoned from this time of 250 

μsec. Hence t = (350—250) = 100μsec. So we have to calculate first i(t)growing(@250 μsec)which is 
given by: 
i(t) growing(@250 μsec) = V/R (1 – e –t / τ ) = (16/8)X10--3 (1 – e –t / 25 μsec) = 2x(1 – e –250/ 25 μsec) mA 
=2x(1 – e –10) mA = 1.999 mA 

i(t)growing(@250 μsec)= 1.999 mA = I(0) 
 

Hence i(t)@350 μsec =I(0).e – t / τ = 1.99x e – 100 μsec /25 μsecmA = 1.99x e – 4mA = 0.03663 mA 
 

i(t)@350 μsec = 0.03663 mA 
 

 The voltage across the resistor vR @350 μsec = Rxi(t@350 μsec) = 8KΩx0.03663 mA 
vR @350 μsec= 0.293V 
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Example 6: In the circuit shown below the switch is kept in position 1 up to 100 μ secs and then 

it is moved to position 2 . Supply voltage is 5V DC . Find 
 

a) The current and voltage across the capacitor at t = 40 μ secs 

b) The current and voltage across the resistor at t = 150 μ secs 
 
 

 

Solution:The time constant τ of the circuit is same in both conditions and is given by τ = RC = 

40x103x200x10x-12 = 8 μsec 
 

a) The time t = 40 μsec corresponds to the switch in position 1 and in that condition the current 

i(t) is given by the standard expression for charging current 

i(t) = (V/R) [e-t/τ ] 
 

i(t) @40 μsec = 5v/40KΩ [e-40/8 ] Amps = 0.125x[ e-5 ] mA = 0.84224 μA 
 

i(t) @40 μsec =  0.84224 μA 
 

The voltage across the capacitor during the charging period is given by V [1- e-t/τ ]. vC(t) 

@40 μsec = 5[1 -- e-40/8 ] = 5[1 -- e-5 ] = 4.9663 Volts 

vC(t) @40 μsec = 4.9663 Volts 
 
 
 

b) The time t = 150 μsec corresponds to the switch in position 2 and the current i(t) is given by 

the discharge voltage expression i(t) = [vC(t)0/R]. e-t/τ 

NETWORK THEORY

Dept. of ECE SCSVMV Page 127



 

 

 
 

Where vC(t)0 is the initial capacitor voltage when the switch was changed to position 2 and it is 

the voltage that has built up by 100 μsec during the charging time (switch in position 1 ) and 

hence is given by 

vC(t)@100μsec = 5[1- e-100/8 ] volts = 5x[1- e-12.5 ] Volts = 4.999 Volts 
And now t=150 μsec from beginning is equal to t = (150-100) = 50 μsec from the time 

switch is changed to position 2. 

Therefore the current through the resistor at 150 μsec from the beginning = i(t)150μsec= 

(4.999/40KΩ). e-t/τ 

i(t)150μsec = 0.1249 x e-50/8 = 0.241 μA 
i(t)150μsec    =  0.241 μA 

And the voltage across the resistor = R x i(t) = 40KΩ x 0.241 μA = 0.00964v 
 

 
Example 7: In the circuit shown below find out the expressions for the current i1 and i2 when the 

switch is closed at time t= 0 
 

 

Solution: It is to be noted that in this circuit there are two current loops 1 and 2 . Current i1 alone 

flows through the resistor 15 Ω and the current i2 alone flows through the inductance0.5 H where as 

both currents i1 and i2 flow through the resistor 20 Ω. Applying KVL to the two loops taking care 

of this point we get 

20(i1 + i2 ) + 15 i1  = 100 i.e 35 i1 + 20 i2 = 100 -------- (1) 
 

and 20(i1 + i2 ) + 0.5 di2/dt = 100 ; 20 i1+ 20 i2 +0.5 di2/dt = 100 ------------- (2) 
 

Substituting the value of i1 = [100/35 – (20/35) i2] = 2.86 – 0.57 i2 obtained from the above 

equation (1) into equation (2) we get : 

20 [2.86 – 0.57 i2] +20i2 + 0.5 (di2/dt) = 100 
 

57.14 – 11.4 i2 +20i2 + 0.5 (di2/dt) = 100 
 

(di2/dt) i2 +17.14 i2 = 85.72 
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The solution for this equation is given by i2(t) = K. e – 17.14t + 85.72/17.14 and the constant K can be 
evaluated by invoking the initial condition. The initial current through the inductor = 0 at time t = 0 . 

 

Hence K = -- 85.72/17.14 = -- 5 
 

Therefore i2(t) = 5 ( 1-- e – 17.14t ) Amps 
 

And current i1(t) = 2.86 – 0.57 i2 = 2.86 – 0.57 [5 ( 1-- e – 17.14t ) ] = 0.01 + 2.85 e – 17.14t Amps 
 

And current i1(t) = 0.01 + 2.85 e – 17.14t Amps 
 

Example 8 : In the circuit shown below find an expression for the current i(t) when the switch is changed 
from position 1 to 2 at time t= 0 . 

 

 

Solution: The following points are to be noted with reference to this circuit: 
 

 When the switch is changed to position 2 the circuit is equivalent to a normal source free 
circuit but with a current dependent voltage source given as 10i. 

 The initial current in position 2 is same as the current when the switch was in position 1 ( for a 

long time ) and is given by I0 = 500/(40+60) = 5 Amps 
 

The loop equation in position 2 is given by : 60i + 0.4 di/dt = 10i i.e ( 50/0.4 )i + di/dt = 0 

Writing the equation in the ‘s’notation where ‘s’ is the operator equivalent to (d/dt) we get ( s+ 125 

) i = 0 and the characteristic equation will be ( s+ 125 ) = 0 

Hence the solution i(t) is given by i(t) = K . e--125t. The constant K can be evaluated by invoking the 

initial condition that i(t) @ t=0 is equal to I0 = 5 amps .Then the above equation becomes: 
 

5 = K . e—125X0 i.e K = 5 and hence the current in the circuit when the switch is changed to 
position 2 becomes: i(t) = 5. e--125t Amps 
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Example 9 : In the circuit shown below find an expression for the current i(t) when the switch is opened 
at time t= 0 

 

 

Solution: The following points may be noted with reference to this circuit: 
 

 When the switch is opened the circuit is equivalent to a normal source free circuit but with a 
current dependent voltage source given as 5i. 

 The initial current I0 when the switch is opened is same as the current when the switch was 
closed for a long time and is given by I0 = 100/(10+10) = 5 Amps 

 

The loop equation when the switch is opened is given by : 
 

(1/4x10—6)∫idt + 10i = 5i 
(1/4x10—6)∫idt + 5i = 0 

 
Differentiating the above equation we get : 

 
5.(di/dt) + (1/4x10—6)i = 0 i.e. = (di/dt) + (1/20 x 10—6)i = 0 

 
Writing the above equation in the ‘s’notation where ‘s’ is the operator equivalent to (d/dt) we get 

 

( s+ 1/20 x 10—6 ) i = 0 and the characteristic equation will be ( s+ 1/20 x 10—6 ) = 0 
 

The solution i(t) is given by i(t) = K . e–t/20 x 10—6. The constant K can be evaluated by invoking the 

initial condition that i(t) @ t=0is equal to I0 = 5 amps .Then the above equation becomes: 
 

5 = K . e –t/20 x 10—6 i.e K = 5 and hence the current in the circuit when the switch is opened becomes:
 i(t) = 5. e –t/20 x 10—6 Amps 

 

Example 10: A series RLC circuit as shown in the figure below has R = 5Ω,L= 2H and C = 0.5F.The 
supply voltage is 10 V DC . Find 

 

a) The current in the circuit when there is no initial charge on the capacitor. 
b) The current in the circuit when the capacitor has initial voltage of 5V 
c) Repeat question (a) when the resistance is changed to 4 Ω 
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d) Repeat question (a) when the resistance is changed to 1 Ω 
 

 

Solution: The basic governing equation of this series circuit is given by : 
Ri + 1/C∫ 𝒊𝒅𝒕 + L. (di/dt)= V 

On differentiation we get the same equation in the standard differential equation form 
L(d2i/dt2)+ R(di/dt)+ (1/C)i = 0 

 
By dividing the equation by L and using the operator ‘s’ for d/dt we get theequation in the form of 
characteristic equation as : 

[s2 + (R/L)s + (1/LC)]  = 0 
 

Whose roots are given by: 

s1,s2   =− R/2L±√[(R/2L)2− (1/LC)]= −α ±√(α2– ω0
2) 

 

and three types of solutions are possible. 
1. α > ω0, i.e when LC > (2L/R)2 s1  and s2  will both be negative real numbers, leading to what is referred 

to as an over damped responsegiven by : 
i (t) = A1e

s1t+ A2e
s2t

 
2. α = ω0, , i.e when LC = (2L/R)2  s1  and s2  are equal   which leads to what is called a critically damped 

responsegiven by : 
i (t) = e−αt(A1t + A2) 

3. α < ω0,  i.e when LC < (2L/R)2 both s1 and s2 will have nonzero imaginary components, leading to what is 
known as an under damped responsegiven by : 

 
i (t) = e−αt(A1 cosωd t + A2 sinωd t) 

whereωdis called natural resonant frequency and is given given by: 

ωd  =  √ω0
2– α2

 
 

The procedure to evaluate the complete solution consists of the following steps for each part of the question: 
1. We have to first calculate the roots for each part of the question and depending on to which case the 

roots belong we have to take the appropriate solution . 

2. Then by invoking the first initial condition i.e i = 0 at t=0 obtain the first relation between A1 and 
A2or one of its values. 

3. If one constant value is obtained directly substitute it into the above solution and take its first 
derivative. Or else directly take the first derivative of the above solution 
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4. Now obtain the value di/dt @ t= 0from the basic RLC circuit equation by invoking the initial 
conditions of vC@ t=0 and i(t) @ t=0 . Now equate this to the differential of the solution for i(t) to get the 
second relation between A1 and A2( or the second constant . Now using these two equations we 
can solve for A1 and A2 and subsititute in the solution for i(t) to get the final solution. 

 
(a)  s1,s2   =  − R/2L±√[(R/2L)2− (1/LC)]  =  (-5/2x2)±√[(5/2x2)2 – (1/2x0.5)]  =  -1.25  ± 0.75. 
i.e. s1 = --0.5 and s2 = --2 

 
In this case the roots are negative real numbers and the solution is given by : i (t) = 

A1e
s1t+ A2e

s2t= A1e
-0.5t+ A2e

-2t ----------------- (1) 
Now we will apply the first initial condition i.e i(t) = 0 at t=0 .Then we get 
0 = A1e

-0.5x0+ A2e
-2x0 i.e. A1+ A2 = 0 

The basic equation for voltage in the series RLC circuit is given as : V = 

R.i(t) + vC(t) + L.(di/dt) i.e di/dt = 1/L [ V -R.i(t) - vC(t) 
At time t=0 we get 

(di/dt)@ t=0 =  1/L [ V -R.i(t=0) - vC(t=0) ] -------------- (2) 
But we know that the voltage across the capacitor and current are zero at time t=0 . 

Therefore  (di/dt)@ t=0  = V/L  = 10/2 = 5 --------------------- (3) 
 

Now the equation for i(t) at equation (1) is differentiated to get (di/dt) = 

-0.5A1e
-0.5t-2A2e

-2t
 

and the above value of (di/dt)@ t=0 = 5 is substituted in that to get the second equation with A1 and A2 

(di/dt)@ t=0 = 5 = -0.5A1e
-0.5x0-2A2e

-2x0 = -0.5A1 -- 2A2 

Now we can solve the two equations for A1 and A2 

 
A1+ A2  = 0 and -0.5A1--2A2  = 5 to get A1  = 10/3  and A2  = --- 10/3 

 
And the final solution for i(t) is : (10/3)[e-0.5t– e-2t ] Amps 

 
(b) At time t=0 the voltage across the capacitor = 5V ie. vC(t=0) = 5V . But i(t=0) is still =0.using these values 
in the equation (2) above we get 
(di/dt)@ t=0 = ½ (10-5 ) = 2-5 
Then the two equations in A1 and A2 are A1+ A2 = 0 and -0.5A1--2A2 =2.5 
Solving these two equations we get A1 = 5/3 and A2 = -5/3 

And the final solution for i(t) is : (5/3)[e-0.5t– e-2t ] Amps 

 
(c) The roots of the characteristic equation when the Resistance is changed to 4 s1,s2   =  − 

R/2L±√[(R/2L)2− (1/LC)]  =  (-4/2x2) ±√[(4/2x2)2 – (1/2x0.5)]  =  -1.0 
i.e the roots are real and equal and the solution is given by 

i (t) = e−αt(A1t + A2) = e−1t(A1t + A2) ------------ (4) 
Now using the initial condition i(t) = 0 at time t=0 we get A2 = 0 

 

 
We have already found in equation (3) for the basic series RLC circuit (di/dt)@ t=0 = 5 
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Now we will find di(t)/dt of equation (4) and equate it to the 

above value. di /dt = -e−1t(A1t + A2) + e−1t (A1) = e−1t [A1 – A1t 

–A2] and 
(di /dt) @t=0= e−1x0 [A1 – A1x0 –A2] i.e 
A1 – A2 = 5 Therefore A1 =5 and A2 = 
0 

And the final solution for i(t) is i(t) = 5te−1tAmps 

 
(d) Roots of the characteristic equation when the resistance is changed to 1 Ω are : 

 
s1,s2   =  − R/2L±√[(R/2L)2− (1/LC)]  =  (-1/2x2) ±√[(1/4)2 – (1/2x0.5)]  = --0.25 ±j0.94 

 
The roots are complex and so the solution is then given by : i (t) = e−αt(A1 cosωd t + A2 sinωd t) 
Where α = 0.25 and ωd= 0.9465 
Now we will apply the initial conditions to find out the constants A1 and A2 

First initial condition is i(t)@t=0 = 0 applying this into the equation : i (t) = e−αt(A1 cosωd t + A2 

sinωd t) we get A1 = 0 and using this value of A1 in the abve equation for i(t) we get 
i (t) = e−αt(A2 sinωd t) 
We have already obtained the second initial condition as di (t) /dt@t=0= 5 from the basic equation 
of the series RLC circuit. Now let us differentiate above equation for current i.e :i (t) = e−αt(A2 

sinωd t) and equate it to 5 to get the second constant A2 

di (t) /dt = e−αt(A2 ωd cos ωd t) + (A2 sinωd 

t) . –α. e−αt di (t) /dt  @t=0 =A2. ωd= 
5 
i.e A2 = 5 / ωd = 5/0.94 = 5.3 
Now using this value of A2 and the values of α = 0.25 and ωd = 0.94in the above expression 
for the current we finally get : 

i (t) = e−0.25t(2.569 sin 1.9465t) 

 
The currents in all the three different cases (a), (c) and (d) are shown below : 
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Conclusion: 

   
The most important facts and results discussed in the chapter can be summarized as follows: 

• Transients in electric circuits occur due to the presence of energy storage 
elements (i.e., inductors and capacitors). 

•Transients in electric circuits can be excited by initial conditions, by sources, or by both. 
Analysis of transients can be broken down into two major steps: 

1.Determination of initial conditions for the energy storage elements by using the 
continuity of voltage across a capacitor and the continuity of current through 
an inductor. 

2.Analysis of electric circuits after switching. This step normally involves the solution of 
initial value problems for ordinary differential equations. 

    

 Reference: 

 

[1].Sudhakar, A., Shyammohan, S. P.; “Circuits and Network”; Tata McGraw-Hill New Delhi,2000 
[2]. A William Hayt, “Engineering Circuit Analysis” 8th Edition, McGraw-Hill Education 2004 
[3]. Paranjothi SR, “Electric Circuits Analysis,” New Age International Ltd., New Delhi, 1996. 
 
Post Test MCQs: 

 

1. The dependent current source shown in given figure. 

 
a. delivers 80W 
b. absorbs 80W 
c. deliver 40W 
d. absorbs 40W 

 
2. The input resistance of the network in figure is 

 
a. 10R 

b.  

c.  

d.  
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3. The closing of switch S1 and S2 in figure will light up 

 
a. lamp L1 only 
b. lamps L1 and L2 

c. lamp L2 only 
d. none of them 

 
4. 

 
If the load in the given circuit is 120 kΩ, what is the loaded output voltage? 

a. 4.21 V 
b. 15.79 V 
c. 16 V 
d. 19.67 V 

 
 

5 The current flowing through an unloaded voltage divider is called the: 

a. resistor current 
b. load current 

c. bleeder current 
d. voltage current 
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UNIT – V  

NETWORK SYNTHESIS  
AIM : 

To understand the significance of network synthesis 
 

Pre-Requisites: 
 
        Knowledge of Basic Mathematics – II & Basic Electronics Engineering 
Pre - MCQs: 

1, In figure, the switch S is initially open and steady state conditions are reached. At t = 0 switch is closed. The initial 
current through 2C capacitor is 

 
 
 
a. zero 
b. 1A 
c. 2A 
d. 3A 

2. For an RC driving point impedance function, the poles and zeros 
 

a. should alternate on real axis 
b. should alternate only on negative real axis 
c. should alternate on imaginary axis 
d. none of the above 

3. The circuit in figure will act as ideal current source with respect to terminals A and B when frequency is 

 
a. 0 
b. 1 rad/sec 
c. 4 rad/sec 
d. 16 rad/sec 
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Introduction: 
Network synthesis is a design technique for linear electrical circuits. Synthesis starts from 

a prescribed impedance function of frequency or frequency response and then determines the 

possible networks that will produce the required response. 
  

HurwitzPolynomial 
 

A polynomial p(s) is said to be Hurwitz if all the  roots  of  p(s)  are located  in the 

open  left half (LH) s-plane (not including the imaginary axis).Let p(s) be the 

polynomial in question. Assume first that p(s) is neither  an even  nor an  odd 

polynomial. To test whether such a polynomial p(s) is indeed a Hurwitz polynomial, 

we may use the Hurwitz test. 

 First  decompose  p(s)  into  its  even  and  odd  parts,  M(s)  and  N(s), 

respectively, as p(s) = M(s) + N(s). 

 Using M(s) and N(s) we form the  test  ratio  T(s),  whose  numerator  has  a 

higher degree  than  that  of  its  denominator.  Suppose  that  p(s)  is  a  polynomial of 

degree d. Then 

 

Next, we perform the continued fraction  expansion  about  infinity  on  the test ratio T(s), 

removing one pole at a time in the form of a quotient qs, resulting in: 
 
 
 

where q is is the ith quotient, and qi, is the associated coefficient. 

 If there is  one  or  more  quotients  with  negative  coefficients,  then  p(s)  is       neither a 

Hurwitz nor a modified Hurwitz polynomial. On the other hand, if there are d 

quotients (d = d
^

) and every quotient has a positive coefficient, then p(s) is a 

Hurwitz polynomial. 
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Finally, if the number of quotient d
^ 

is less than d but every quotient has a positive 

coefficient, this means that there is a common factor k(s) between M(s) and N(s). 

Hence, we can write p(s) as: 

 
 

  Because all the d
^ 

quotients  of  T(s)  have  positive  coefficients,  the  polyno- 

mial p(s) in (4-10) is  Hurwitz.  Thus,  if  k(s)  is  a  modified  Hurwitz  

polynomial [i.e., if all  the  roots  of  k(s)  are  simple  and  purely  imaginary], 

then p(s) is a modified Hurwitz polynomial. 
 

A procedure to  determine  if  k(s)  is  a  modified  Hurwitz  polynomial  is  

described in the following in conjunction with the case when p(s) is either an  

even or an odd polynomial. 

 Suppose now that p(s) is either an even or an odd polynomial of degree d. is a 

modified Hurwitz polynomial if and only if p(s) has only simple and imaginary 

axis roots (including the origin). 

 To determine if p(s) is a modified Hurwitz polynomial, we form a test ratio 

^ 
T (s): 

 

and perform the continued fraction expansion about infinity on  T
^

(s),  as in (4- 

9). Then p(s) is a modified Hurwitz polynomial if and only if there are  d  

quotients in the expansion and each quotient has a positive coefficient. 

 In the case when p(s) is either an even or an odd polynomial, if there is  one or  

more negative coefficient in the continued fraction  expansion  of  T^(s),  then  

p(s) has a RH s-plane root; and if all coefficients  are positive but there are only  

d^ < d quotients, then all roots of p(s) are on the imaginary axis of the  s-plane,  

but  p(s)  has  non-simple  or  multiple  roots.  Either   situation implies that p(s)   

is not a modified Hurwitz polynomial. 

 

Because d -— 4 is even, the test ratio is 
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1    

3 

M{s) s* - 5s2 -1- 2 (V14) 

Clearly,  at r = T{s) en [i.e., T s) has a pole at infinity]. Extracting this 
pole at infinity in the form of a quotient, we obtain 

 

  (4-15) 

where (1J3)z is the first quotient, 1/3 is its coefficient, and 
 

 

s) 

is the remainder. Hence, 

T{s) - 
 i 

S 
_(10/3)s 2 -£ 2 

3W+56 

   3s°  + 5s  
(10/3)s° -1- 2 

(4-16) 

 
 

Observe that Th{‹x›) m. Thus, we can extract a Pole from Th[s) in the form of 
a quotient as we did to F(s). The result is to write Z’i(«) as 

 

T  {s) —— —9 s (4-17) 
10 T 2 S) 

where (9JI0)x is the second quotient, 9/10 is its coefficient, and 1/F 2(s) is the 
second remainder. Substituting (4-17) into (4-11), 
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Routh–Hurwitz stability criterion: 

 

A tabular method can be used to determine the stability when the roots of a higher order 
characteristic polynomial are difficult to obtain. For an nth-degree polynomial 

 

  

the table has n + 1 rows and the following structure: 
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where the elements and can be computed as follows: 

 
 

 
When completed, the number of sign changes in the first column will be the number of non- 
negative poles. 

 
In the first column, there are two sign changes, thus there are two non-negative roots where 
the system is unstable. Sometimes the presence of poles on the imaginary axis creates a 
situation of marginal stability. The row of polynomial which is just above the row containing 
the zeroes is called "Auxiliary Polynomial". 

 

  

We have the following table: 

 
1 8 20 16 

2 12 16 0 

2 12 16 0 

0 0 0 0 

 

In  such  a  case  the  Auxiliary polynomial  is  which is again 
equal to zero. The next step is to differentiate the above equation which yields the following 

polynomial.   . The coefficients of the row containing zero now 
become "8" and "24". The process of Routh array is proceeded using these values which yield 
two points on the imaginary axis. These two points on the imaginary axis are the prime cause 
of marginal stability. 

 

Even and Odd functions : 
 

In mathematics, even functions and odd functions are functions which satisfy particular 
symmetry relations, with respect to taking additive inverses. They are important in many 
areas of mathematical analysis, especially the theory of power series and Fourier series. They 
are named for the parity of the powers of the power functions which satisfy each condition: 
the function f(x) = xn is an even function if n is an even integer, and it is an odd function if n 

is an odd integer. 
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Definition and examples 

 
The concept of evenness or oddness is only defined for functions whose domain and range 
both have an additive inverse. This includes additive groups, all rings, all fields, and all 
vector spaces. Thus, for example, a real-valued function of a real variable could be even or 
odd, as could a complex-valued function of a vector variable, and so on. The examples are 
real-valued functions of a real variable, to illustrate the symmetry of their graphs. 

 
Even functions 

 
 

 
ƒ(x) = x2 is an example of an even function. 

 
Let f(x) be a real-valued function of a real variable. Then f is even if the following equation 
holds for all x and -x in the domain of f:[1] 

 

 
Geometrically speaking, the graph face of an even function is symmetric with respect to the 
y-axis, meaning that its graph remains unchanged after reflection about the y-axis. Examples 
of even functions are |x|, x2, x4, cos(x), and cosh(x). 

 
Odd functions 

 
 

 
ƒ(x) = x3 is an example of an odd function. 
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Again, let f(x) be a real-valued function of a real variable. Then f is odd if the following 
equation holds for all x and -x in the domain of f:[2] 

 

 
Geometrically, the graph of an odd function has rotational symmetry with respect to the 
origin, meaning that its graph remains unchanged after rotation of 180 degrees about the 
origin. Examples of odd functions are x, x3, sin(x), sinh(x), and erf(x). 

 
Continuity and differentiability 

 

A function's being odd or even does not imply differentiability, or even continuity. For 
example, the Dirichlet function is even, but is nowhere continuous. Properties involving 
Fourier series, Taylor series, derivatives and so on may only be used when they can be 
assumed to exist. 

 
 

 

Generalizations 

 

Irrational functions 

 

The irrational function Z(s) is PR if and only if 
 

 Z(s) is analytic in the open right half s-plane (Re[s] > 0) 
 Z(s) is real when s is positive and real 
 Re[Z(s)] ≥ 0 when Re[s] ≥ 0 

 
Matrix-valued functions 

 

A irrational matrix-valued function Z(s) is PR if and only if 
 

 Each element of Z(s) is analytic in the open right half s-plane (Re[s] > 0) 
 Each element of Z(s) is real when s is positive and real 
 The Hermitian part (Z(s) + Z†(s))/2 of Z(s) is positive semi-definite when Re[s] ≥ 0 
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SYNTHESIS OF R-L NETWORK BY FOSTER’S METHOD 
 
Introduction : 

By Kirchhoff's voltage law, the voltage across the capacitor, VC, plus the voltage across the 
inductor, VL must equal zero: 

 

 
Likewise, by Kirchhoff's current law, the current through the capacitor equals the current 
through the inductor: 

 

 
From the constitutive relations for the circuit elements, we also know that 

 

 
and 

 

 
Differential equation 

 
Rearranging and substituting gives the second order differential equation 

 

 
The parameter ω0, the resonant angular frequency, is defined as: 

 

 
Using this can simplify the differential equation 

 

 
The associated polynomial is 
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Thus,       where j is the imaginary unit. 

 

 
Series LC circuit 

 

 
Series LC circuit 

 
In the series configuration of the LC circuit, the inductor L and capacitor C are connected in 
series, as shown here. The total voltage v across the open terminals is simply the sum of the 
voltage across the inductor and the voltage across the capacitor. The current i into the positive 
terminal of the circuit is equal to the current through both the capacitor and the inductor. 

 

 

 
Resonance 

 
Inductive reactance magnitude ( ) increases as frequency increases while capacitive  
reactance magnitude ( ) decreases with the increase in frequency. At one  particular 
frequency, these two reactances are equal in magnitude but opposite in sign; that frequency is 
called the resonant frequency ( ) for the given circuit. 

 
Hence, at resonance: 

 

 

 
Solving for , we have 

 

 
which is defined as the resonant angular frequency of the circuit. 

NETWORK THEORY

Dept. of ECE SCSVMV Page 145

http://en.wikipedia.org/wiki/Imaginary_unit
http://en.wikipedia.org/wiki/Reactance_%28electronics%29#Capacitive_reactance
http://en.wikipedia.org/wiki/Reactance_%28electronics%29#Capacitive_reactance


Converting angular frequency (in radians per second) into frequency (in hertz),one has 
 

 
In a series configuration, XC and XL cancel each other out. In real, rather than idealised 
components, the current is opposed, mostly by the resistance of the coil windings. Thus, the 
current supplied to a series resonant circuit is a maximum at resonance. 

 
 In the limit as current is maximum. Circuit impedance is minimum. In this state, 

a circuit is called an acceptor circuit 

 For , . Hence, the circuit is capacitive. 
 For , . Hence, the circuit is inductive. 

 
Impedance 

 

In the series configuration, resonance occurs when the complex electrical impedance of the 
circuit approaches zero. 

 
First consider the impedance of the series LC circuit. The total impedance is given by the 
sum of the inductive and capacitive impedances: 

 

 
Writing the inductive impedance as ZL = jωL and capacitive impedance as ZC = (jωC)−1 and 
substituting gives 

 

. 

Writing this expression under a common denominator gives 
 

. 

Finally, defining the natural angular frequency as 
 

, 

the impedance becomes 
 

. 
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The numerator implies that in the limit as , the total impedance Z will be zero and 
otherwise non-zero. Therefore the series LC circuit, when connected in series with a  load, 
will act as a band-pass filter having zero impedance at the resonant frequency of the LC 
circuit. 

 
Parallel LC circuit 

 

 
Parallel LC Circuit 

 
In the parallel configuration, the inductor L and capacitor C are connected in parallel, as 
shown here. The voltage v across the open terminals is equal to both the voltage across the 
inductor and the voltage across the capacitor. The total current i flowing into the positive 
terminal of the circuit is equal to the sum of the current flowing through the inductor and the 
current flowing through the capacitor. 

 

 

 
Resonance 

 

Let R be the internal resistance of the coil. When XL equals XC, the reactive branch currents 
are equal and opposite. Hence they cancel out each other to give minimum current in the 
main line. Since total current is minimum, in this state the total impedance is maximum. 

 

Resonant frequency given by: . 

Note that any reactive branch current is not minimum at resonance, but each is given 
separately by dividing source voltage (V) by reactance (Z). Hence I=V/Z, as per Ohm's law. 

 
 At f0, line current is minimum. Total impedance is maximum. In this state a circuit is 

called a rejector circuit. 
 Below f0, circuit is inductive. 
 Above f0,circuit is capacitive. 

 
Impedance 
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The same analysis may be applied to the parallel LC circuit. The total impedance is then 
given by: 

 

 
and after substitution of and and simplification, gives 

 

 
which further simplifies to 

 

 
where 

 

 
Note that 

 

 
but for all other values of the impedance is finite. The parallel LC circuit connected  

in series with a load will act as band-stop filter having infinite impedance at the resonant 
frequency of the LC circuit. The parallel LC circuit connected in parallel with a load will act 
as band-pass filter. 

 

RC NETWORK SYNTHESIS: 
 

A resistor–capacitor circuit (RC circuit), or RC filter or RC network, is an electric circuit 
composed of resistors and capacitors driven by a voltage or current source. A first order RC 
circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit. 

 
RC circuits can be used to filter a signal by blocking certain frequencies and passing others. 
The two most common RC filters are the high-pass filters and low-pass filters; band-pass 
filters and band-stop filters usually require RLC filters, though crude ones can be made with 
RC filters. 

 
Introduction 

 

There are three basic, linear passive lumped analog circuit components: the resistor (R), the 
capacitor (C), and the inductor (L). These may be combined in the RC circuit, the RL circuit, 
the LC circuit, and the RLC circuit, with the abbreviations indicating which components are 
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used. These circuits, among them, exhibit a large number of important types of behaviour that 
are fundamental to much of analog electronics. In particular, they are able to act as passive 
filters. This article considers the RC circuit, in both series and parallel forms, as shown in the 
diagrams below. 

 
This article relies on knowledge of the complex impedance representation of 

capacitors and on knowledge of the frequency domain representation of signals. 
 

Natural response 
 

 

 

 

 

 

 

 
RC circuit 

 
The simplest RC circuit is a capacitor and a resistor in series. When a circuit consists of only 
a charged capacitor and a resistor, the capacitor will discharge its stored energy through the 
resistor. The voltage across the capacitor, which is time dependent, can be found by using 
Kirchhoff's current law, where the current charging the capacitor must equal the current 
through the resistor. This results in the linear differential equation 

 

. 

Solving this equation for V yields the formula for exponential decay: 
 

 
where V0 is the capacitor voltage at time t = 0. 

 

The time required for the voltage to fall to  is called the RC time constant and is given by 
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Complex impedance 

 
The complex impedance, ZC (in ohms) of a capacitor with capacitance C (in farads) is 

 

 
The complex frequency s is, in general, a complex number, 

 

 
where 

 

 represents the imaginary unit: 
 

 
 is the exponential decay constant (in radians per second), and 
 is the sinusoidal angular frequency (also in radians per second). 

 
Series circuit 

 
Series RC circuit 

 
By viewing the circuit as a voltage divider, the voltage across the capacitor is: 

 

 
and the voltage across the resistor is: 

 

. 

Transfer functions 

 

The transfer function from the input voltage to the voltage across the capacitor is 
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. 
 

Similarly, the transfer function from the input to the voltage across the resistor is 

 

. 

Poles and zeros 

 
Both transfer functions have a single pole located at 

 

. 

In addition, the transfer function for the resistor has a zero located at the origin. 
 

Gain and phase 

 
The magnitude of the gains across the two components are: 

 

 
and 

 

, 

and the phase angles are: 
 

 
and 

 

. 

These expressions together may be substituted into the usual expression for the phasor 
representing the output: 
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. 
 

Current 

 

The current in the circuit is the same everywhere since the circuit is in series: 
 

 
Impulse response 

 

The impulse response for each voltage is the inverse Laplace transform of the corresponding 
transfer function. It represents the response of the circuit to an input voltage consisting of an 
impulse or Dirac delta function. 

 
The impulse response for the capacitor voltage is 

 

 
where u(t) is the Heaviside step function and 

 

 
is the time constant. 

 
Similarly, the impulse response for the resistor voltage is 

 

 
where δ(t) is the Dirac delta function 

 

Frequency-domain considerations 

 
These are frequency domain expressions. Analysis of them will show which frequencies the 
circuits (or filters) pass and reject. This analysis rests on a consideration of what happens to 
these gains as the frequency becomes very large and very small. 

 
As         . 

 
As : .This shows that, if the output is taken across the capacitor, 
high frequencies are attenuated (shorted to ground) and low frequencies are passed. Thus, the 
circuit behaves as a low-pass filter. If, though, the output is taken across the resistor, high 
frequencies are passed and low frequencies are attenuated (since the capacitor blocks the 
signal as its frequency approaches 0). In this configuration, the circuit behaves as a high-pass 

filter. 
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given 

The range of frequencies that the filter passes is called its bandwidth. The point at which the 
filter attenuates the signal to half its unfiltered power is termed its cutoff frequency. This 
requires that the gain of the circuit be reduced to 

 

. 

Solving the above equation yields 
 

 
or 

 

 
which is the frequency that the filter will attenuate to half its original power. 

 
Clearly, the phases also depend on frequency, although this effect is less interesting generally 
than the gain variations. 

 
As : 

 

. 

As : 
 

 

 
So at DC (0 Hz), the capacitor voltage is in phase with the signal voltage while the resistor 
voltage leads it by 90°. As frequency increases, the capacitor voltage comes to have a 90° lag 
relative to the signal and the resistor voltage comes to be in-phase with the signal. 

 
Time-domain considerations 

 
The most straightforward way to derive the time domain behaviour is to use the Laplace 

transforms  of  the  expressions   for   and above.  This  effectively  transforms 

.   Assuming   a   step  input  (i.e. before and then    
afterwards): 
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and  

. 
 

Capacitor voltage step-response. 
 

 

Resistor voltage step-response. 
 

Partial fractions expansions and the inverse Laplace transform yield: 
 

 
. 

 
These equations are for calculating the voltage across the capacitor and resistor respectively 
while the capacitor is charging; for discharging, the equations are vice-versa. These equations 
can be rewritten in terms of charge and current using the relationships C=Q/V and V=IR (see 
Ohm's law). 
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Parallel circuit 
 

 
Parallel RC circuit 

 

The parallel RC circuit is generally of less interest than the series circuit. This is largely 

because the output voltage is equal to the input voltage — as a result, this circuit does 
not act as a filter on the input signal unless fed by a current source. 

 
With complex impedances: 

 

 
and 

 

 . 

 
This shows that the capacitor current is 90° out of phase with the resistor (and source) 
current. Alternatively, the governing differential equations may be used: 

 

 
and 

 

 
. 

 
When fed by a current source, the transfer function of a parallel RC circuit is: 

 

 
. 
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RL NETWORK SYNTHESIS: 
 

A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit 
composed of resistors and inductors driven by a voltage or current source. A first order RL 
circuit is composed of one resistor and one inductor and is the simplest type of RL circuit.  

The fundamental passive linear circuit elements are the resistor (R), capacitor (C) and 
inductor (L). These circuit elements can be combined to form an electrical circuit in four 
distinct ways: the RC circuit, the RL circuit, the LC circuit and the RLC circuit with the 
abbreviations indicating which components are used. These circuits exhibit important types 
of behaviour that are fundamental to analogue electronics. In particular, they are able to act as 
passive filters. This article considers the RL circuit in both series and parallel as shown in the 
diagrams. 

 
In practice, however, capacitors (and RC circuits) are usually preferred to inductors since 
they can be more easily manufactured and are generally physically smaller, particularly for 
higher values of components. 

 
Both RC and RL circuits form a single-pole filter. Depending on whether the reactive 
element (C or L) is in series with the load, or parallel with the load will dictate whether the 
filter is low-pass or high-pass. 

 
Frequently RL circuits are used for DC power supplies to RF amplifiers, where the inductor 
is used to pass DC bias current and block the RF getting back into the power supply. 

 
 
 

Complex impedance 

 

The complex impedance ZL (in ohms) of an inductor with inductance L (in henries) is 
 

 
The complex frequency s is a complex number, 

 

 
where 

 
 j represents the imaginary unit: 

 

 
 is the exponential decay constant (in radians per second), and 
 is the angular frequency (in radians per second). 

 
Eigenfunctions 

 
The complex-valued eigenfunctions of any linear time-invariant (LTI) system are of the 
following forms: 
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From Euler's formula, the real-part of these eigenfunctions are exponentially-decaying 
sinusoids: 

 

 
Sinusoidal steady state 

 
Sinusoidal steady state is a special case in which the input voltage consists of a pure sinusoid 
(with no exponential decay). As a result, 

 

 
and the evaluation of s becomes 

 

 

Series circuit 

Series RL circuit 

 
By viewing the circuit as a voltage divider, we see that the voltage across the inductor is: 

 

 
and the voltage across the resistor is: 

 

 

Current 

 
The current in the circuit is the same everywhere since the circuit is in series: 
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Transfer functions 

 
The transfer function for the inductor is 

 

 
Similarly, the transfer function for the resistor is 

 

 

Poles and zeros 

 

Both transfer functions have a single pole located at 
 

 
In addition, the transfer function for the inductor has a zero located at the origin. 

 
Gain and phase angle 

 

The gains across the two components are found by taking the magnitudes of the above 
expressions: 

 

 
and 

 

 
and the phase angles are: 

 

 
and 
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Phasor notation 

 

These expressions together may be substituted into the usual expression for the phasor 
representing the output: 

 

 
Impulse response 

 
The impulse response for each voltage is the inverse Laplace transform of the corresponding 
transfer function. It represents the response of the circuit to an input voltage consisting of an 
impulse or Dirac delta function. 

 
The impulse response for the inductor voltage is 

 

 
where u(t) is the Heaviside step function and 

 

 
is the time constant. 

 
Similarly, the impulse response for the resistor voltage is 

 

 
Zero input response (ZIR) 

 

The Zero input response, also called the natural response, of an RL circuit describes the 
behavior of the circuit after it has reached constant voltages and currents and is disconnected 
from any power source. It is called the zero-input response because it requires no input. 

 
The ZIR of an RL circuit is: 

 

 
 

 

 

 

 

 

 

NETWORK THEORY

Dept. of ECE SCSVMV Page 159

http://en.wikipedia.org/wiki/Phasor
http://en.wikipedia.org/wiki/Impulse_response
http://en.wikipedia.org/wiki/Laplace_transform
http://en.wikipedia.org/wiki/Dirac_delta_function
http://en.wikipedia.org/wiki/Heaviside_step_function
http://en.wikipedia.org/wiki/Time_constant


Frequency domain considerations 

These are frequency domain expressions. Analysis of them will show which frequencies the 
circuits (or filters) pass and reject. This analysis rests on a consideration of what happens to 
these gains as the frequency becomes very large and very small. 

 
As : 

 

 
As : 

 

 
This shows that, if the output is taken across the inductor, high frequencies are passed and 
low frequencies are attenuated (rejected). Thus, the circuit behaves as a high-pass filter. If, 
though, the output is taken across the resistor, high frequencies are rejected and low 
frequencies are passed. In this configuration, the circuit behaves as a low-pass filter. Compare 
this with the behaviour of the resistor output in an RC circuit, where the reverse is the case. 

 
The range of frequencies that the filter passes is called its bandwidth. The point at which the 
filter attenuates the signal to half its unfiltered power is termed its cutoff frequency. This 
requires that the gain of the circuit be reduced to 

 

. 

Solving the above equation yields 
 

 
rad/s 

 

or 
 

Hz 
 

which is the frequency that the filter will attenuate to half its original power. 
 

Clearly, the phases also depend on frequency, although this effect is less interesting generally 
than the gain variations. 

 
As : 
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As : 
 

 
So at DC (0 Hz), the resistor voltage is in phase with the signal voltage while the inductor 
voltage leads it by 90°. As frequency increases, the resistor voltage comes to have a 90° lag 
relative to the signal and the inductor voltage comes to be in-phase with the signal. 

 
Time domain considerations 

 

The most straightforward way to derive the time domain behaviour is to use the 
transforms of the expressions for and given above. This effectively transforms 
Assuming a step input (i.e., before         and then afterwards): 

 

 

 

Inductor voltage step-response. 
 

Resistor voltage step-response. 

 
 
 
 
 
 
 

Laplace 
. 
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RLC NETWORK SYNTHESIS: 
 

 

 

 

 

A series RLC circuit: a resistor, inductor, and a capacitor 

An RLC circuit (the letters R, L and C can be in other orders) is an electrical circuit 
consisting of a resistor, an inductor, and a capacitor, connected in series or in parallel. The 
RLC part of the name is due to those letters being the usual electrical symbols for resistance, 
inductance and capacitance respectively. The circuit forms a harmonic oscillator for current 
and will resonate in a similar way as an LC circuit will. The main difference that the presence 
of the resistor makes is that any oscillation induced in the circuit will die away over time if it 
is not kept going by a source. This effect of the resistor is called damping. The presence of 
the resistance also reduces the peak resonant frequency somewhat. Some resistance is 
unavoidable in real circuits, even if a resistor is not specifically included as a component. An 
ideal, pure LC circuit is an abstraction for the purpose of theory. 

 
There are many applications for this circuit. They are used in many different types of 
oscillator circuits. Another important application is for tuning, such as in radio receivers or 
television sets, where they are used to select a narrow range of frequencies from the ambient 
radio waves. In this role the circuit is often referred to as a tuned circuit. An RLC circuit can 
be used as a band-pass filter, band-stop filter, low-pass filter or high-pass filter. The tuning 
application, for instance, is an example of band-pass filtering. The RLC filter is described as 
a second-order circuit, meaning that any voltage or current in the circuit can be described by 
a second-order differential equation in circuit analysis. 

 
The three circuit elements can be combined in a number of different topologies. All three 
elements in series or all three elements in parallel are the simplest in concept and the most 
straightforward to analyse. There are, however, other arrangements, some with practical 
importance in real circuits. One issue often encountered is the need to take into account 
inductor resistance. Inductors are typically constructed from coils of wire, the resistance of 
which is not usually desirable, but it often has a significant effect on the circuit. 

 
Resonance 

 

An important property of this circuit is its ability to resonate at a specific frequency, the 

resonance frequency,  . Frequencies are measured in units of hertz. In this article, however, 
angular frequency,    , is used which is more mathematically convenient. This is measured    
in radians per second. They are related to each other by a simple proportion, 
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Resonance occurs because energy is stored in two different ways: in an electric field as the 
capacitor is charged and in a magnetic field as current flows through the inductor. Energy can 
be transferred from one to the other within the circuit and this can be oscillatory. A 
mechanical analogy is a weight suspended on a spring which will oscillate up and down when 
released. This is no passing metaphor; a weight on a spring is described by exactly the same 
second order differential equation as an RLC circuit and for all the properties of the one 
system there will be found an analogous property of the other. The mechanical property 
answering to the resistor in the circuit is friction in the spring/weight system. Friction will 
slowly bring any oscillation to a halt if there is no external force driving it. Likewise, the 
resistance in an RLC circuit will "damp" the oscillation, diminishing it with time if there is no 
driving AC power source in the circuit. 

 
The resonance frequency is defined as the frequency at which the impedance of the circuit is 
at a minimum. Equivalently, it can be defined as the frequency at which the impedance is 

purely real (that is, purely resistive). This occurs because the impedances of the inductor and 
capacitor at resonance are equal but of opposite sign and cancel out. Circuits where L and C 
are in parallel rather than series actually have a maximum impedance rather than a minimum 
impedance. For this reason they are often described as antiresonators, it is still usual, 
however, to name the frequency at which this occurs as the resonance frequency. 

 
Natural frequency 

 

The resonance frequency is defined in terms of the impedance presented to a driving source. 
It is still possible for the circuit to carry on oscillating (for a time) after the driving source has 
been removed or it is subjected to a step in voltage (including a step down to zero). This is 
similar to the way that a tuning fork will carry on ringing after it has been struck, and the 
effect is often called ringing. This effect is the peak natural resonance frequency of the circuit 
and in general is not exactly the same as the driven resonance frequency, although the two 
will usually be quite close to each other. Various terms are used by different authors to 
distinguish the two, but resonance frequency unqualified usually means the driven resonance 
frequency. The driven frequency may be called the undamped resonance frequency or 
undamped natural frequency and the peak frequency may be called the damped resonance 
frequency or the damped natural frequency. The reason for this terminology is that the driven 
resonance frequency in a series or parallel resonant circuit has the value[1] 

 

 
This is exactly the same as the resonance frequency of an LC circuit, that is, one with no 
resistor present. The resonant frequency for an RLC circuit is the same as a circuit in which 
there is no damping, hence undamped resonance frequency. The peak resonance frequency, 
on the other hand, depends on the value of the resistor and is described as the damped 
resonant frequency. A highly damped circuit will fail to resonate at all when not driven. A 
circuit with a value of resistor that causes it to be just on the edge of ringing is called 
critically damped. Either side of critically damped are described as underdamped (ringing 
happens) and overdamped (ringing is suppressed). 
 

 

 

 

Damping 
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Damping is caused by the resistance in the circuit. It determines whether or not the circuit 
will resonate naturally (that is, without a driving source). Circuits which will resonate in this 
way are described as underdamped and those that will not are overdamped. Damping 
attenuation (symbol α) is measured in nepers per second. However, the unitless damping 
factor (symbol ζ, zeta) is often a more useful measure, which is related to α by 

 

The special case of ζ = 1 is called critical damping and represents the case of a circuit that 
is just on the border of oscillation. It is the minimum damping that can be applied without 
causing oscillation. 

 
Bandwidth 

 

The resonance effect can be used for filtering, the rapid change in impedance near resonance 
can be used to pass or block signals close to the resonance frequency. Both band-pass and 
band-stop filters can be constructed and some filter circuits are shown later in the article. A 
key parameter in filter design is bandwidth. The bandwidth is measured between the 3dB- 
points, that is, the frequencies at which the power passed through the circuit has fallen to half 
the value passed at resonance. There are two of these half-power frequencies, one above, and 
one below the resonance frequency 

 

 
where is the bandwidth, is  the  lower  half-power frequency and is the upper half- 
power frequency. The bandwidth is related to attenuation by, 

 

 
when the units are radians per second and nepers per second respectively[citation needed]. Other 
units may require a conversion factor. A more general measure of bandwidth is the fractional 
bandwidth, which expresses the bandwidth as a fraction of the resonance frequency and is 
given by 

 

 
The fractional bandwidth is also often stated as a percentage. The damping of filter circuits is 
adjusted to result in the required bandwidth. A narrow band filter, such as a notch filter, 
requires low damping. A wide band filter requires high damping. 

 
Q factor 

 

The Q factor is a widespread measure used to characterise resonators. It is defined as the peak 
energy stored in the circuit divided by the average energy dissipated in it per radian at 
resonance. Low Q circuits are therefore damped and lossy and high Q circuits are 
underdamped. Q is related to bandwidth; low Q circuits are wide band and high Q circuits are 
narrow band. In fact, it happens that Q is the inverse of fractional bandwidth 
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Q factor is directly proportional to selectivity, as Q factor depends inversely on bandwidth.  

 

Applications 

 

Variable tuned circuits 

 

A very frequent use of these circuits is in the tuning circuits of analogue radios. Adjustable 
tuning is commonly achieved with a parallel plate variable capacitor which allows the value 
of C to be changed and tune to stations on different frequencies. For the IF stage in the radio 
where the tuning is preset in the factory the more usual solution is an adjustable core in the 

 

 

Fig. RLC circuit as a low-pass filter Fig. RLC circuit as a high-pass filter 

 
 
 
 
 

Fig. RLC circuit as a series band-pass filter in 

series with the line 

 
 
 
 
 
Fig. RLC circuit as a parallel band-pass 

filter in shunt across the line 

 
 

 

 

 

Fig. RLC circuit as a series band-stop filter in 

shunt across the line 

 
 

 

 

 

Fig. RLC circuit as a parallel band-stop 

filter in series with the line 
inductor to adjust L. In this design the core (made of a high permeability material that has the 
effect of increasing inductance) is threaded so that it can be screwed further in, or screwed 
further out of the inductor winding as required. 
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FOSTER'S REACTANCE THEOREM: 
 

      Introduction: 

Network synthesis involves the methods used to determine an electric circuit that satisfy 

certain specifications. Given an impulse response there are many techniques that can be used 

to synthesize a circuit with the specified response. Different methods may also be used to 

synthesize circuits, all of which may be optimal. Hence the solution to a network synthesis 

problem is never unique. 

Many applications today use digital processing in lieu of analog processing and the GHz 

spectrum is finding increasing use in applications such as wireless communications. 

However, operation at high frequencies requires analog filtering and processing circuits 

simply because using digital techniques is neither realistic nor economical. Another 

advantage that analog devices have over their digital counterparts is their ability to operate 

with wide instantaneous bandwidths and moderately high dynamic ranges at microwave 

frequencies. 

For a Foster 1 realisation the component values are given by the partial fraction expansion 
 
 

 
While for the Foster 2 form the values are given by the alternative partial fraction expansion 

 
 

 

For the Cauer 1 realization the component values are given by a continued fraction 

expansion around infinity 
 

 

 
The Cauer 2 values are given by a continued fraction expansion around zero 

 

 
 

Foster and Cauer network realisations. These allow simple determination of the Required 

component values by continued and partial fraction expansions 
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Foster's reactance theorem is an important theorem in the fields of electrical network 
analysis and synthesis. The theorem states that the reactance of a passive, lossless two- 
terminal (one-port) network always strictly monotonically increases with frequency. It is 
easily seen that the reactances of inductors and capacitors individually increase with 
frequency and from that basis a proof for passive lossless networks generally can be 
constructed. The proof of the theorem was presented by Ronald Martin Foster in 
1924,although the principle had been published earlier by Foster's colleagues at American 
Telephone & Telegraph. 

 
The theorem can be extended to admittances and the encompassing concept of immittances. 
A consequence of Foster's theorem is that poles and zeroes of the reactance must alternate 
with frequency. Foster used this property to develop two canonical forms for realising these 
networks. Foster's work was an important starting point for the development of network 
synthesis. 
 

 
It is possible to construct non-Foster networks using active components such as amplifiers. 
These can generate an impedance equivalent to a negative inductance or capacitance. The 
negative impedance converter is an example of such a circuit. 
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Conclusion: 
   

By following the step by step procedure in each form the desired networks are synthesised. The 
following are the circuit diagrams obtained as a result of the analysis 

    Reference: 
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Post Test MCQs: 
1. 

The transfer function  is for 
 

      a.. low pass filter 
      b. notch filter 
      c. high pass filter 
      d. band pass filter 
 
2. For the ladder network of figure, open circuit driving point impedance at port 1 = 

 
a.  

 
b. 

 
c. 

 
d. 
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3. A pole zero plot of a filter is shown in figure. It is 
 

 
 

a low pass filter 
b. high pass filter 
c. band pass filter 
d. all pass filter 

 
4. An RC impedance function has a pole at s = 0. The first element in the Foster form of synthesis 

a. is R 
b..may be R and C 
c. is C 
d. is R and C in parallel 

 

5. Figure shows the variation of Z(ω) for a positive real function. The function is 

 
 

a. .RC impedance 
b. RL impedance 
c. RLC impedance 
d. Reactance function 
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